GJ 251c: un mondo alieno tra licheni neri e atmosfere tossiche

Notizia di queste ore è la scoperta di un nuovo pianeta che orbita attorno a una nana rossa (M4) a 18 anni luce di distanza. E gù tutti i simpatici giornaloni a dire una nuova Super Terra, quaasi fosse Tahiti, magari abitata da gnomi di Babbo Natale in bermuda e mohito.
Io tutto questo entusiasmo che vedo in giro non lo capisco.
Il pianeta ha una propria rotazione assiale o è bloccato in risonanza con la sua stella? La sua massa la sappiamo, ma la densità? Da questo dipende la gravità in superficie. Al massimo (ammesso abbia una densità simile alla Terra potremo aspettarci un’atmosfera particolarmente ricca di carbonio affinché si raggiunga il punto triplo dell’acqua (273 K), perché la sua temperatura di equilibrio è a 216 K. In queste condizioni, probabilmente la forma di vita più evoluta sarà qualche lichene nero (la radiazione di corpo nero della stella influisce sui processi di fotosintesi) in un’atmosfera per noi tossica. Facciamo due conti.

A soli 18 anni luce dalla Terra, GJ 251c è una Super Terra che ha acceso l’interesse di astronomi e divulgatori. Ma dietro l’entusiasmo dei titoli di giornale, si nascondono alcune domande cruciali per stabilirne l’abitabilità: ha una rotazione propria? Qual è la sua densità? E soprattutto: può davvero ospitare vita?

Parametri orbitali e fisici

  • Massa: \( M_p \approx 4 M_\oplus \)
  • Periodo orbitale: \( P \approx 54 \, \text{giorni} \)
  • Temperatura di equilibrio: \( T_{eq} \approx 216 \, \text{K} \)

Densità e gravità superficiale

\[ \frac{R_p}{R_\oplus} = \left( \frac{M_p / M_\oplus}{\rho_p / \rho_\oplus} \right)^{1/3} \]
\[ \frac{g_p}{g_\oplus} = \frac{M_p / M_\oplus}{(R_p / R_\oplus)^2} \]

Assumendo una densità tra \(\rho_p = 4-5 \ \text{g/cm}^3\) 1 [1], si possono stimare il raggio e la gravità con \( \rho_p = 4.5 \, \text{g/cm}^3 \) e \( \rho_\oplus = 5.51 \, \text{g/cm}^3 \):

Raggio relativo rispetto alla Terra:

\[ \frac{R_p}{R_\oplus} = \left( \frac{4}{4.5 / 5.51} \right)^{1/3} = \left( \frac{4}{0.816} \right)^{1/3} \approx 1.70 \]

E la relativa gravità superficiale (sempre rispetto alla Terra):

\[ \frac{g_p}{g_\oplus} = \frac{4}{(1.70)^2} \approx 1.38 \]

Rotazione e distribuzione termica

Con un periodo orbitale di 54 giorni attorno a una nana rossa, è altamente probabile che Gliese 251c sia bloccato marealmente o in risonanza spin-orbita 2 .
Un blocco mareale stretto, come quello della Luna con la Terra per esempio, implicherebbe che un emisfero del pianeta sia perennemente illuminato, l’altro al buio. In questo caso saremmo di fronte a forti gradienti termici, mitigabili solo da un’atmosfera particolarmente densa e dinamica.
Però potrebbero esserci ancora delle zone potenzialmente sostenibili limitate al terminatore (la fascia tra il giorno e la notte).
Anche in questo caso la matematica ci dice perché:

Tempo di sincronizzazione mareale

La formula estesa è [2]:

\[
t_{\text{sync}} = \frac{\omega a^6 I Q}{3 G m_S^2 k_2 R_P^5}
\]

Dove:

  • \( \omega \): velocità angolare iniziale
  • \( a \): distanza dal corpo centrale
  • \( I = \frac{2}{5} m_p R_P^2 \): momento d’inerzia
  • \( Q \): fattore di dissipazione
  • \( G = 6.674 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)
  • \( m_s \): massa del corpo centrale
  • \( k_2 \): numero di Love
  • \( R_P \): raggio del pianeta

Per GJ 251c:

\[ I = \frac{2}{5} \cdot 2.39 \times 10^{25} \cdot (1.08 \times 10^7)^2 \approx 1.11 \times 10^{39} \]
\[ \omega = \frac{2\pi}{86400} \approx 7.27 \times 10^{-5} \]
\[ t_{\text{sync}} \approx \frac{(7.27 \times 10^{-5}) \cdot (3.29 \times 10^{10})^6 \cdot (1.11 \times 10^{39}) \cdot 100}{3 \cdot 6.674 \times 10^{-11} \cdot (7.16 \times 10^{29})^2 \cdot 0.3 \cdot (1.08 \times 10^7)^5} \]
\[ t_{\text{sync}} \approx 1.2 \times 10^7 \, \text{anni} \]

Quasi certamente il nostro pianeta è in uno stato di blocco mareale con la sua stella.

Una plausibile atmosfera

Ecco come potrebbe apparire un ambiente tipico nei pressi del terminatore di GJ 251c in una bella giornata di sole, pardon, Gliese 251.

Una plausibile composizione potrebbe essere  simile a quella terrestre dell’Eone Adeano. Quindi ipotizziamo:

  • Atmosfera:

    • Pressione: \( 3.0 \ \text{bar} \)

    • CO₂: \( 75\% \) → \( 2.25 \ \text{bar} \)

    • N₂: \( 20\% \) → \( 0.6 \ \text{bar} \)

    • CH₄: \( 4\% \) → \( 0.12 \ \text{bar} \)

    • H₂: \( 1\% \) → \( 0.03 \ \text{bar} \)

  • Temperature:

    • Emisfero diurno: \( 290-310 \ K \)

    • Terminatore: \( 273-283 \ K \)

    • Emisfero notturno: \( 200-230 \ K \)

Con una pressione sufficiente a garantire il rimescolamento atmosferico su entrambi gli emisferi di un pianeta marealmente bloccato:

\[
P_{atm} \approx 2 – 4 \, \text{bar}
\]

e una temperatura media di superficie vicina al punto triplo dell’acqua:

\[
T_{surf} = T_{eq} + \Delta T_{serra} \Rightarrow T_{surf} \approx 276 \, \text{K}
\]

Profilo di assorbimento dei pigmenti:

\[
A(\lambda) = A_0 \cdot e^{-\left( \frac{\lambda – \lambda_{peak}}{\sigma} \right)^2}
\]

\[
\lambda_{peak} \approx 1.1 \, \mu m
\]

Biosfera ipotetica: licheni infrarossi

Comparazione della radiazione di corpo nero tra Gliese 251 (in rosso) e il Sole (grigio). Lo sfondo potrebbe somigliare a quello che gli occhi umani percepirebbero in una bella giornata a mezzogiorno.

Tutto quanto  finora detto con la matematica ha una notevole importanza per lo sviluppo di possibili forme di vita su Gliese 251c. Facciamo altri due conti:

La legge di Wien che descrive la radiazione di corpo nero per  \(T\) è:

\[
\lambda_{\text{max}} = \frac{2.898 \times 10^{-3}}{T}
\]

Per \( T = 3350 \, \text{K} \), otteniamo: \(
\lambda_{\text{max}} \approx 865 \, \text{nm}
\), ma abbiamo visto che una atmosfera abbastanza dinamica da agire su entrambi gli emisferi di un pianeta bloccato spinge ancor di più verso il lontano infrarosso il picco di radiazioni: \(
\lambda_{peak} \approx 1100 \, \text{nm}\)

Questo ci suggerisce che su Gliese 251c potremmo aspettarci forme di vita anaerobica, dotate di metabolismo lento e pigmenti scuri, simili alla rodopsina terrestre [3] presente in alcuni funghi chitridiomiceti [4].
Questi organismi potrebbero sfruttare meccanismi di conversione energetica analoghi all’ATP sintasi, l’enzima che immagazzina energia luminosa sfruttando un gradiente elettrochimico nei mitocondri degli eucarioti e nella membrana cellulare dei procarioti.
Il loro habitat ideale potrebbe essere costituito da rocce porose nella zona crepuscolare, dove la luce visibile è scarsa e il vicino infrarosso (NIR) domina. Mentre sulla Terra pigmenti come la rodopsina assorbono nel NIR—una lunghezza d’onda invisibile all’occhio umano—appaiono del tutto incolori 3, in un mondo dove ogni fotone è prezioso, l’evoluzione spingerebbe gli organismi ad adattare i propri enzimi fotosensibili per massimizzare l’assorbimento dell’energia disponibile, spostata verso le lunghezze d’onda rosse e infrarosse.
Dovremmo quindi aspettarci di trovare pigmenti capaci di assorbire uno spettro molto più ampio, ce va dalla parte più alta dello spettro visibile su quel mondo fino alla luce infrarossa dominante. Questi pigmenti assorbirebbero tutta la luce visibile (per quanto scarsa) e quella infrarossa, apparendo neri ai nostri occhi.
Il ciclo biochimico che dovremmo quindi aspettarci di trovare è pressapoco questo:
\[ 4H_2 + CO_2 \rightarrow CH_4 + 2H_2O + \text{energia} \]

Conclusione

Gliese 251c non è una seconda Terra. È un mondo alieno, forse abitabile per quelle forme di vita che metabolizzano nell’infrarosso e respirano metano. Considerando che Gliese 251 ha un’età di 6.8 miliardi di anni – è più vecchia del Sole – il pianeta ha avuto abbondante tempo non solo per sincronizzarsi con la sua stella, ma anche per sviluppare una biosfera matura e stabilizzare la sua atmosfera
Forse, sul pianeta potrebbero coesistere anche sacche di vita con biochimiche molto diverse tra loro la cui unica cosa in comune è la fioca luce della loro stella.
E proprio per questo, è ancora più affascinante.

Come il V2H può cambiare l’Italia (parte prima)

L’autonomia energetica non è solo un sogno. È una scelta tecnica, culturale e personale. Da un paio di anni vivo in una casa alimentata da un impianto fotovoltaico da 8 kWp, con 15 kWh di accumulo e una gestione intelligente orchestrata da intelligenza artificiale. Risultato? La mia ultima bolletta bimestrale è di 48 €, di cui 16 € sono il canone TV. Il resto è energia. E anche quella, è tutta mia.

Ho dovuto, malvolentieri, suddividere l’articolo i due tronconi: ci sono troppe cose da dire rispetto al tempo di attenzione di un lettore medio. Questa m’è parsa la soluzione migliore per tutti, e ne varrà la pena aspettare qualche giorno affinché l’importanza di un veicolo elettrico V2G e del fotovoltaico casalingo con accumulo venga compresa al meglio dal lettore.
Nel prossimo, le considerazioni finali.

L’auto come batteria: il concetto di V2H/V2G

Con l’arrivo della mobilità elettrica, le auto non sono più solo mezzi di trasporto. Sono accumulatori mobili da 60–100 kWh, parcheggiati per il 90% del tempo. Il V2H (Vehicle-to-Home) permette di scaricare energia dalla batteria dell’auto per alimentare la casa. Il V2G (Vehicle-to-Grid) consente di immettere energia nella rete nazionale, contribuendo alla stabilità e ricevendo compensi.

 

Simulazione: un milione di auto elettriche V2G

ParametroValore stimatoNote / fonte
Numero di auto V2G1.000.000
Plausibile al 2028-2030 (oggi ~334k EV totali, proiezione PNIEC: 6,5M al 2030).
Percentuale attiva contemporanea50% → 500.000 autoBasato su soste medie (notte/lavoro), ~50% connesse in orari di picco.
Capacità media batteria60 kWh (conservativa)Media attuale 53 kWh; sale con nuovi modelli.
Energia disponibile per V2G50% della batteria → 30 kWh/autoLimite per non intaccare mobilità; ciclo round-trip 80%.
Totale energia disponibile500.000 × 24 kWh = 12 GWhUtile per ~1-2 ore di scarica di picco.
Potenza media erogabile/auto3 - 7 kW (scarica controllata, non massima)Conservativo; fino a 7 kW domestico, 22 kW aziendale.
Potenza istantanea totale1.5 - 3,5 GWDipende da aggregazione; es. 500k × 3-7 kW.
Impatto sulla rete nazionale
12 GWh di energia immediata disponibile → sufficiente a coprire:
Il fabbisogno giornaliero di 2 milioni di abitazioni (media 6 kWh/giorno/abitazione)
1.5 - 3.5 GW di potenza istantanea → pari a
circa una grande centrale nucleare.
O il 10–15% del picco serale medio italiano in inverno

 

La rete italiana (gestita da Terna) ha un picco di domanda attuale di circa 56 GW (luglio 2025), con consumi medi giornalieri di circa 800 GWh. Un parco V2G come immaginato nella simulazione agirebbe come una batteria distribuita mobile: essa assorbe senza sforzo gli eccessi rinnovabili (ex. il solare diurno) e rilascia in picchi serali, stabilizzando la rete senza bisogno di storage stazionario costoso. Ecco l’impatto stimato, in termini percentuali e benefici:

  1. Su Picchi di Domanda (Peak Shaving)
    • Riduzione potenziale: 1.5-3.5 GW, ovvero il 2.7-6.2% del picco nazionale (56 GW).
    • Esempio locale: A Roma, stime Areti indicano circa 400 MW solo con lo smart charging più il V2G iniziale; su scala nazionale si potrebbe arrivare a 2-4 GW con un milione di auto.
    • Beneficio: Eviterebbe blackout o investimenti di rete per un risparmio di circa 1-2 miliardi di euro fino al 2030.
  2. Su Energia Totale e Integrazione Rinnovabili
    • 12 GWh netti equivalgono a circa l’1.5% del consumo giornaliero, stimati oggi 800 GWh, ma concentrati tutti in 2-4 ore di picco; questo scenario dimezzerebbe i vuoti serali, integrando il surplus del 10-15% di solare/eolico (oggi al 42% della domanda energetica).
    • Al 2030, con 6.5 milioni di veicoli elettrici V2G (stimati) si otterrebbe un potenziale accumulo totale pari a 300 GWh (pari alla produzione giornaliera di 12 centrali nucleari da 1000 MW), riducendo le emissioni CO2 di 200-300 mila tonnellate all’anno (valore economico 0.8-4.8 €/kWh evitato).
  3. Benefici Economici e Ambientali
    • Economici: Almeno 700-800 milioni di euro all’anno per il sistema (riduzione costi dispacciamento del 40%); mentre gli utenti guadagnerebbero intorno ai 100 €/auto/anno vendendo il surplus di energia.
    • Ambientali: Maggiore quota di rinnovabili significa meno emissioni (la doppia vita delle batterie ridurrebbe il bisogno di litio); il degrado extra batteria <1% in 10 anni con gestione smart.
    • Rischi: Congestioni locali se non aggregati bene, ma mitigabili con le Unità Virtuali Abilitate Miste (UVAM) da 1 MW [5]

Sala tecnica operativa di Terna (RM)

Secondo Motus-E e ARERA [6] il V2G potrebbe diventare una delle leve principali per la transizione energetica italiana, con incentivi fino a 600 €/anno per utente e un significativo – come abbiamo visto — impatto strutturale sulla bilancia energetica nazionale.
In pratica, se anche solo metà delle auto elettriche italiane diventassero V2G-ready, potremmo trasformare il parco circolante in un gigantesco UPS nazionale, capace di assorbire e restituire energia in modo intelligente.

Un esempio molto simile è il californiano V2G Curbside [7] dell’aprile 2025. Il California Energy Commission ha finanziato un progetto da 1.1 milioni di dollari per sviluppare il primo sistema V2G curbside al mondo 1. È stato pensato in collaborazione con UC Berkeley e University of Delaware per creare colonnine bidirezionali installabili sui marciapiedi urbani, dove milioni di auto sono parcheggiate ogni giorno, con l’obiettivo di trasformare le auto elettriche in sosta in risorse energetiche attive, capaci di scaricare energia nella rete durante i picchi e ridurre la pressione sulle infrastrutture elettriche.
Solo in California, si parla di 7 milioni di veicoli leggeri parcheggiati quotidianamente. Se anche solo il 10% di questi fosse V2G-ready, si otterrebbero 21 GWh di energia disponibile in caso di necessità. Il progetto include lo sviluppo del J3068 Active Cable [8], un cavo intelligente che gestisce comunicazione, autenticazione e flussi bidirezionali.

24 Giugno 2025, California. Un Modello Perfetto

il 24 giugno 2025, la California ha vissuto un momento storico. Durante una fascia critica tra le 19:00 e le 21:00, la rete elettrica era sull’orlo del blackout a causa di un picco di richiesta e una produzione rinnovabile in calo (picco +15-20% rispetto alla richiesta prevista). Ed è lì che è entrata in gioco la Virtual Power Plant (VPP) di Tesla e Sunrun: una rete di 25.000 Powerwall domestici aggregati e gestiti in tempo reale.
Sunrun ha dispacciato oltre 340 MW prelevate dalle batterie domestiche in serata, mentre Tesla ha testato un evento con migliaia di Powerwall, iniettando potenza extra durante le ore critiche e evitando blackout diffusi. Si è trattato di un salvataggio da 100 MWh in un colpo solo, simile a una centrale termoelettrica di medie dimensioni ma distribuito e scalabile. E il sistema ha risposto in modo sincrono, stabile e distribuito, evitando il collasso della rete. Il modello  californiano, con la sua straordinaria capacità di adattamento — domanda di picco intorno ai 50 GW, ha tagliato i costi emergenziali per centinaia di milioni di dollari e integrato un 15% di surplus di energia rinnovabile senza ricorrere a nuovi impianti centrali.

In Italia, con i nostri picchi estivi (tipo +7% consumi a giugno 2025), un setup VPP da un milione di auto e accumuli casalinghi potrebbe replicarlo alla scala nazionale, coprendo 1-3 GW extra senza muovere nemmeno un mattone.
L’esperienza californiana dimostra che l’energia decentralizzata è affidabile e che l’applicazione concreta dell’intelligenza artificiale nella gestione della rete elettrica distribuita è in grado di coordinare migliaia di dispositivi privati senza sforzo. E questo è un modello perfettamente replicabile in Italia grazie all’integrazione del modello casa-auto elettrica tramite il V2H/V2G.

28 aprile 2025. Caos nella Penisola Iberica

Il blackout del 28 aprile 2025 in Spagna e Portogallo è stato un campanello d’allarme per tutta l’Europa [9]. In pochi secondi, 15 GW di potenza sono spariti dalla rete iberica, causando oltre 10 ore di interruzione in molte zone e gravi disagi nei trasporti, telecomunicazioni e servizi essenziali. E tutto questo, paradossalmente, in un momento di alta produzione rinnovabile.
Non è stata la sovrapproduzione delle fonti rinnovabili, come qualche incauto il giorno dopo azzardò a proporre, ma una rete non sufficientemente flessibile per gestire sbilanciamenti improvvisi. Più precisamente fu proprio l’assenza di sistemi di bilanciamento del carico elettrico nazionale come sistemi di accumulo distribuito configurati in una VPP attiva a far crollare il sistema o, almeno, questa soluzione avrebbe ridotto di almeno un 40/50% le probabilità di un blackout estremo come quello che si è verificato dando il tempo necessario ai gestori di riallineare gli impianti tradizionali.

28 settembre 2003: Blackout italiano

L’Italia vista dallo spazio la notte del blackout nazionale del 2003

Dopo il blackout del 28 settembre 2003 [10], l’Italia ha invece investito pesantemente in reti intelligenti (le smart grid) con sistemi di protezione e riaccensione automatica, e interconnessioni europee più robuste coi paesi europei più vicini (Francia, Svizzera, Slovenia). Anche i sistemi di accumulo stazionario e fotovoltaico residenziale sono in crescita costante.
L’adozione della normativa CEI 0-21 che ora include anche il V2G [11] consentirà alla rete elettrica nazionale italiana di essere ancor più resiliente di quanto sia oggi.

Ora, immaginiamo di adattare l’ipotesi di cui sopra di un parco di un milione di auto elettriche V2G, esteso magari anche alle batterie domestiche per chi ha il fotovoltaico: con ARERA che promuove le Unità Virtuali Miste (UVAM [12]) regolamentate dal Testo  Integrato del Dispaccciamento Elettrico (TIDE [13]) dal 2025, è fattibile: aggregatori come Enel X o nuovi player potrebbero coordinare via app, pagando 0.10-0.20 €/kWh per scarica.
Ecco l’impatto stimato da questo scenario:

  1. Sul picco italiano del 28 giugno scorso  (eccesso di rchiesta di energia intorno a 1-2 GW):
    • La VPP coprirebbe il 75-175% dell’extra domanda: 1.5-3.5 GW iniettati nelle 2-4 ore serali di picco dimezzerebbero il calo del fotovoltaico, evitando così onerose importazioni lampo da Francia e Austria (+20% nei prezzi spot).
    • Beneficio: Risparmio rete di circa 100-200 milioni di euro a evento senza emissioni di gas extra,  grazie al surplus  fotovoltaico (Italia al 10% quota, sale al 25% con VPP).
  2. Rispettto al blackout spagnolo (un distacco generale causato dalla perdita di 30-36 GW):
    • Scala nazionale: La rete italiana (picco 56 GW) è simile; una VPP da un milione di auto V2G mitigherebbe  del 5-6% un guasto simile (appoggiandosi comunque anche alla rete europea). Con espansione a 2-3 milioni di auto V2G al 2027,  si raggiungerebbero i 4-7 GW. Abbastanza per tamponare un 10-20% di caduta, dando tempo a Terna per reindirizzare il sistema.
    • Scenario ottimista: In picco di domanda dovuta a un’ondata di caldo anomalo imprevisto,tipo il caso californiano, o un guasto alla rete , nel caso spagnolo, una VPP e le smart grid ridurrebbero i rischi di blackout totale del 40-50%, come in CA.
    • Economicamente: Gli utenti guadagnerebbero per il loro surplus 100-200 €/auto/anno; il sistema nazionale risparmierebbe intorno ai 500-1 miliardo di euro all’anno in investimenti di stoccaggio.

 

Zenone, Olbers e l’energia oscura (terza parte)

Nei precedenti articoli ho cercato di spiegare che il nostro Universo è in realtà freddo e buio fatto perlopiù di vuoto in perenne espansione. È impossibile che il peso di tutto il suo contenuto possa infine provocarne il collasso, non c’è abbastanza materia e energia (anche l’energia ha la sua importanza: ricordate il rapporto di equivalenza tra massa ed energia \(E=mc^2\)?) per farlo chiudere su sé stesso. Ma se l’idea di un Big Crunch finale, ossia una fine dell’Universo governata da pressioni e temperature inimmaginabili tanto da far impallidire l’Inferno dantesco certamente non è piacevole, l’idea che tutta la già poca materia esistente finisca disgregata in una manciata di fotoni solitari nel nulla del vuoto che corre ancora più veloce della luce è spaventoso; inimmaginabile. Ma tranquillizzatevi, questo accadrà forse fra migliaia di eoni ma intanto il fenomeno che condanna a morte l’Universo potrebbe essere lo stesso che permette oggi la nostra esistenza.

La Hubble Ultra Deep Field (HUDF) è stata ripresa tra il 24 settembre 2003 e il 16 gennaio successivo mostra che stelle e galassie già dominavano l'Universo 13 miliardi di ani fa. Questo campo è circa un decimo della luna piena ma contiene qualcosa come dieci mila galassie! Credit: NASA

La Hubble Ultra Deep Field (HUDF) è stata ripresa tra il 24 settembre 2003 e il 16 gennaio successivo mostra che stelle e galassie già dominavano l’Universo 13 miliardi di ani fa. Questo campo è circa un decimo della luna piena ma contiene qualcosa come dieci mila galassie! Credit: NASA

Cercare di immaginare  la vastità dell’Universo è quasi impossibile e descriverlo senza ricorrere agli artifici matematici lo è ancora di più.
La naturale percezione umana è troppo limitata per descriverlo; essa già fallisce quando cerca di dimostrare la piattezza della Terra che è una sfera 7 milioni di volte più grande di un uomo.
Quindi quando sentiamo parlare di “universo in espansione” è spontaneo chiedersi anche “Entro cosa?“. In realtà non c’è un dentro e un fuori, così come non può esserci un punto di partenza e uno di arrivo in una circonferenza. Idealmente il tessuto dell’Universo, lo spazio-tempo, lo si può far coincidere con l’espansione dello stato di falso vuoto provocato dal decadimento del campo inflatone che chiamiamo Big Bang. Una metafora che uso spesso è quella del panettone che lievita: i canditi sono in quiete fra loro, proprio come lo sono le galassie; è il panettone che gonfiandosi fa crescere la loro distanza relativa.  L’Universo fa altrettanto e come non può esserci panettone fuori dal panettone, non può esserci spazio fuori dallo spazio.

Nel 1917 ancora si dava per scontato che l’Universo nel suo insieme fosse statico e immutabile ma le equazioni di campo derivate dalla Relatività Generale asserivano il contrario. Einstein stesso cercò di conciliare le sue equazioni di campo ad un modello statico di universo introducendo una costante, indicata con la lettera greca \(\Lambda\), capace di contrastare il collasso gravitazionale del contenuto dell’universo assegnandole quindi una natura repulsiva. L’aspetto matematico di questa costante è quello di una densità energetica del vuoto  (\(\rho_\Lambda=\frac{\Lambda c^4}{8\pi G}\)) espresse in unità di energia per unità di volume (\(J/m^3\)). Essendo essa il prodotto di altre costanti fisiche, \(\pi\), \(c\) e \(G\),  una volta indicato il suo valore numerico, esso non varia col tempo, con la dimensione di scala o altre condizioni fisiche: è costante comunque.
In seguito la scoperta dell’espansione dell’universo fece decadere l’ipotesi di una costante repulsiva capace di contrastare il collasso dell’Universo, ma nel 1998 due studi indipendenti, Supernova Cosmology Project [cite]https://arxiv.org/abs/0907.3526[/cite] e il High-Z Supernova Search Team [cite]http://arxiv.org/abs/astro-ph/9805200[/cite], dimostrarono che in realtà l’espansione dell’Universo stava accelerando.
La scoperta ovviamente giungeva inaspettata. L’Universo appariva sì in espansione, frutto del residuo della spinta iniziale dell’era inflazionaria; era anche chiaro come i modelli  cosmologici indicassero – come si è visto – che non c’è abbastanza materia ed energia perché il processo di spinta espansiva potesse infine arrestarsi e invertirsi verso un futuro Big Crunch, ma al più ci si poteva aspettare un minimo cenno di rallentamento nel ritmo verso una espansione illimitata, invece una accelerazione era proprio inattesa. E così che il concetto di una una proprietà repulsiva del vuoto, la famosa costante \(Lambda\) introdotta da Einstein ma poi quasi dimenticata perché  ritenuta inutile, tornò alla ribalta.

Ipotesi cosmologica dell’Energia Oscura, il modello della Costante Cosmologica \(\Lambda\)

Dovessimo descrivere il tessuto dello spaziotempo come un fluido, che non è materia o energia ma come più volte detto esiste energeticamente come uno stato di falso vuoto,  allora la densità energetica descritta da \(\rho_\Lambda\) attribuibile ad esso appare invariante rispetto a qualsiasi stato di materia e di energia che occupa lo spazio. In questo modello \(\rho_\Lambda\) è costante, così come lo era nei microsecondi successivi al Big Bang e lo sarà anche in un incalcolabile futuro.

Uno stato di falso vuoto in un campo scalare \(\varphi\). Si noti che l'energia E è più grande di quella dello stato fondamentale o vero vuoto. Una barriera energetica impedisce il campo di decadere verso lo stato di vero vuoto.L'effetto più immediato di questa barriera è la continua creazione di particelle virtuali tramite fenomeni di tunneling quantistico .

Uno stato di falso vuoto (il pallino) in un campo scalare \(\varphi\). Si noti che l’energia \(E\) è più grande di quella dello stato fondamentale o vero vuoto. Una barriera energetica impedisce il campo di decadere verso lo stato di vero vuoto. L’effetto più immediato di questa barriera è la continua creazione di particelle virtuali tramite fenomeni di tunneling quantistico .

È il Principio di Indeterminazione di Heisenberg che permette all’energia del falso vuoto di manifestarsi tramite la perpetua produzione spontanea di particelle virtuali:. $$\tag{1}\Delta x \cdot \Delta p \ge \frac{\hslash}{2}$$
Dove \(\Delta x\) indica il grado di indeterminazione della posizione e \(\Delta p\) quello dell’energia posseduta da una particella \(p\) rispetto alla Costante di Planck ridotta \(\hslash\). La stessa relazione lega l’energia \(E\) e il tempo \(t\): $$\tag{2}\Delta E \cdot \Delta t \ge \frac{\hslash}{2}$$
Questo significa che per un periodo di tempo brevissimo (questo è strettamente legato all’energia della particella) è possibile violare la ferrea regola della conservazione dell’energia, permettendo così  la formazione di coppie di particelle e antiparticelle virtuali che esistono solo per questo brevissimo lasso di tempo prima di annichilirsi a vicenda 1.
Non solo: i gluoni responsabili dell’Interazione Forte che legano insieme i quark sono particelle virtuali, i bosoni delle interazioni deboli sono virtuali e anche i fotoni che si scambiano gli elettroni all’interno degli atomi sono solo virtuali.
Comprendere come questa energia faccia espandere l’Universo è un attimino più complicato.
Immaginatevi di strizzare un palloncino. L’aria, o il gas, al suo interno si concentrerà così in un volume minore e premerà di conseguenza sulle pareti di gomma con una forza maggiore. L’intensità della pressione è ovviamente data dal numero delle particelle per unità di volume per l’energia cinetica delle particelle stesse ed è chiamata appunto densità energetica. Quando rilasciamo il palloncino, il volume di questo aumenta e le particelle d’aria che facevano pressione su un volume minore si ridistribuiscono allentando così la pressione; si ha così un calo della densità energetica.
Ma se la densità energetica dovesse essere una costante come lo è la densità energetica relativa al falso vuoto, ecco che a maggior volume corrisponderebbe una maggiore pressione sulle pareti del palloncino ideale e, più questo si espande, sempre maggiore sarebbe la spinta espansiva.
Questo è ciò che accade all’Universo: dopo un momento inflattivo iniziale provocato dal collasso del campo inflatone verso uno stato di falso vuoto che ha reso omogeneo (\(\Omega =1\)) l’Universo, la densità energetica residua ha continuato il processo di espansione dell’Universo sino alle dimensioni attuali. All’inizio della sua storia, finché l’Universo era più piccolo e giovane, la densità della materia \(\rho\) è stata abbastanza vicina al valore di densità critica \(\rho_c\), permettendo così che l’azione gravitazionale della materia contrastasse in parte la spinta espansiva; ma abbiamo visto che comunque a maggiore volume corrisponde una maggiore spinta espansiva, e è per questo che la materia ha perso la partita a braccio di ferro con l’energia di falso vuoto fino a ridurre la densità media dell’Universo ai valori attuali. In cambio però tutti i complessi meccanismi che regolano ogni forma di materia e di energia non potrebbero esistere in assenza dell’energia del falso vuoto dell’Universo.
Se il destino ultimo dell’Universo è davvero quello del Big Rip, però è anche quello che oggi permette la nostra esistenza, e di questo dovremmo esserne grati.

Qui ho provato a descrivere l’ipotesi più semplice che cerca di spiegare l’Energia Oscura. Ci sono altre teorie che vanno da una revisione della Gravità su scala cosmologica fino all’introduzione di altre forze assolutamente repulsive come nel caso della Quintessenza (un tipo di energia del vuoto che cambia nel tempo al contrario della \(\Lambda\)). Si sono ipotizzate anche bolle repulsive locali piuttosto che un’unica espansione accelerata universale; un po’ di tutto e forse anche di più, solo il tempo speso nella ricerca può dire quale di questi modelli sia vero.
Però spesso nella vita reale e nella scienza in particolare, vale il Principio del Rasoio di Occam, giusto per tornare dalle parti di dove eravamo partiti in questo lungo cammino. Spesso la spiegazione più semplice è anche la più corretta e in questo caso l’ipotesi della Costante Cosmologica è in assoluto quella che lo è di più.
Cieli Sereni

Zenone, Olbers e l’energia oscura (seconda parte)

Nella prima parte di quest’articolo credo di aver dimostrato come nella risposta al paradosso di Olbers si nasconda la prova principe dell’Universo in espansione. Tale affermazione ci svela l’Universo per quello che veramente è. L’Energia Oscura per ora lasciamola per un attimo in disparte e diamo uno sguardo all’aspetto reale dell’Universo prima di approfondire questa voce.

La geometria locale dell'universo è determinato dal fatto che l'Ω densità relativa è inferiore, uguale o maggiore di 1. Dall'alto in basso: un sferica universo con maggiore densità critica (Ω> 1, k> 0); un iperbolica , universo underdense (Ω <1, k <0); e un universo piatto con esattamente la densità critica (Ω = 1, k = 0). L'universo, a differenza dei diagrammi, è tridimensionale.

La geometria locale dell’universo è determinata dalla sua densità. media come indicato nell’articolo.  Dall’alto in basso: un universo è sferico se il rapporto di densità media supera il valore critico 1 (Ω> 1, k> 0) e in questo caso si ha il suo successivo collasso (Big Crunch); un universo iperbolico nel caso di un rapporto di densità media inferiore a 1 (Ω <1, k <0) e quindi destinato all’espansione perpetua (Big Rip); e un universo piatto possiede esattamente il rapporto di densità critico (Ω = 1, k = 0). L’universo, a differenza dei diagrammi, è tridimensionale.

È nella natura dell’uomo tentare di decifrare l’Universo.  Le tante cosmogonie concepite nel passato lo dimostrano.  Un Uovo  Cosmico,  il Caos, la guerra tra forze divine contrapposte, sono stati tutti tentativi di comprendere qualcosa che è immensamente più grande. Ma solo per merito degli strumenti matematici e tecnologici che sono stati sviluppati negli ultimi 400 anni possiamo affermare oggi che si è appena scalfito l’enorme complessità del  Creato.
Fino a neanche cento anni fa l’idea che il cosmo fosse così enormemente vasto non era neppure contemplata: si pensava che le altre galassie lontane fossero soltanto delle nebulose indistinte appartenenti alla Via Lattea [cite]https://it.wikipedia.org/wiki/Grande_Dibattito[/cite].
Il dilemma nel descrivere matematicamente l’Universo apparve ancora più evidente con l’applicazione delle equazioni di campo della Relatività Generale [cite]https://it.wikipedia.org/wiki/Equazione_di_campo_di_Einstein[/cite] in questo contesto. Emergeva così però un quadro ben diverso rispetto a quanto supposto. Fino ad allora era sembrato ragionevole descrivere l’universo ipotizzando che le diverse relazioni tra le diverse quantità fisiche fossero invarianti col variare dell’unità di misura e del sistema di riferimento. In pratica si ipotizzava un universo statico, isotropo sia nello spazio che nel tempo. Un universo così semplificato senza tener conto del suo contenuto di materia ed energia potremmo descriverlo geometricamente piatto (\(\Omega=1\) che indica il rapporto tra la densità rilevata e la densità critica \(\rho / \rho_c\)), dove la somma degli angoli di un triangolo arbitrariamente grande e idealmente infinito restituisce sempre i 180° come abbiamo imparato a scuola [cite]https://it.wikipedia.org/wiki/Universo_di_de_Sitter[/cite]. Il problema è che l’Universo non è vuoto; contiene materia, quindi massa, e energia. In questo caso le equazioni di campo usate nei modelli di Friedmann propongono due soluzioni molto diverse tra loro. Infatti se il rapporto di densità media della materia, indicata dalla lettera greca \(\Omega\), dell’universo fosse minore o uguale rispetto a un certo valore critico (\(\Omega \le 1 \)), allora l’universo risulterebbe destinato a essere spazialmente infinito. Oppure, se il rapporto di densità media dell’universo fosse più alto (\(\Omega> 1\)) allora il campo gravitazionale prodotto da tutta la materia (non importa quanto distante) finirebbe per far collassare di nuovo l’universo su se stesso in un Big Crunch. Comunque, in entrambi i casi queste soluzioni implicano che ci fosse stato nel passato un inizio di tutto: spazio, tempo, materia ed energia, da un punto geometricamente ideale, il Big Bang [1. Chiedersi cosa ci fosse spazialmente al di fuori dell’Universo o prima della sua nascita a questo punto diventa solo speculazione metafisica, il tempo e lo spazio come li intendiamo noi sono una peculiarità intrinseca a questo Universo.].

Were the succession of stars endless, then the background of the sky would present us an uniform luminosity, like that displayed by the Galaxy – since there could be absolutely no point, in all that background, at which would not exist a star. The only mode, therefore, in which, under such a state of affairs, we could comprehend the voids which our telescopes find in innumerable directions, would be by supposing the distance of the invisible background so immense that no ray from it has yet been able to reach us at all.
Se la successione delle stelle fosse senza fine, allora il fondo del cielo si presenterebbe come una luminosità uniforme, come quella mostrata dalla Galassia, dato che non ci sarebbe assolutamente alcun punto, in tutto il cielo, nel quale non esisterebbe una stella. La sola maniera, perciò, con la quale, in questo stato di cose, potremmo comprendere i vuoti che i nostri telescopi trovano in innumerevoli direzioni, sarebbe supporre che la distanza del fondo invisibile sia così immensa che nessun raggio proveniente da esso ha potuto finora raggiungerci”

Tornando un passo indietro al famoso Paradosso di Olbers. Una soluzione alquanto intelligente venne proposta dal poeta americano Edgard Allan Poe in un saggio intitolato Eureka: A Prose Poem [cite]http://www.eapoe.org/works/editions/eurekac.htm[/cite], tratto da una conferenza precedente da lui presentata a New York. Vi cito il brano nel riquadro qui accanto (perdonate per la traduzione forse raffazzonata).  Sarebbe bastato indagare un po’ di più sui limiti imposti dalla fisica per capire che la soluzione fino ad allora proposta, ossia che una moltitudine di nebulose oscure avrebbero oscurato la radiazione stellare più distante, non era quella giusta. Invece un universo dinamico in espansione e  che avesse avuto un inizio certo in un momento passato lo sarebbe stato, più o meno come suggerito da H. A. Poe. Con la scoperta della recessione delle galassie grazie agli studi di Edwin Hubble tra il 1920 e il 1923 divenne evidente che l’Universo era in realtà un universo dinamico in espansione come le soluzioni proposte da Lemaitre e Friedmann usando le equazioni di campo di Albert Einstein suggerivano.

La teoria cosmologica del Big Bang, il modello inflazionario

Il quadro che finalmente emergeva dalle equazioni di Friedman e che come ho descritto la volta scorsa tiene conto dell’espansione metrica del tessuto spazio-tempo, dalla recessione delle galassie al paradosso da me citato più volte, indica un inizio temporale dell’Universo nel passato insieme a tutta la materia e l’energia che oggi osserviamo. Per spiegare la piattezza (\(\Omega =1\)) dell’Universo attuale nel 1979 il fisico americano Alan Guth – e indipendentemente da altri cosmologi come il russo Andrej Linde – suggerì che l’Universo subito dopo la sua formazione (da 10-35 secondi a 10-32 secondi) si sia gonfiato così rapidamente da provocare un superaffreddamento della sua energia, da 1027 K fino a 1022 K.  In questa fase tutto l’Universo sarebbe passato dalle dimensioni di 10-26 metri (un centimiliardesimo delle dimensioni di un protone) a 10 metri di diametro, ben 27 ordini di grandezza in una infinitesima frazione di secondo. Durante quest’era chiamata inflattiva, un sussulto nell’energia, un po’ come una campana che risuona dopo esser stata colpita da un battacchio, avrebbe avviato un processo di ridistribuzione dell’energia verso uno stato di equilibro contrastando così il superrafreddamento causato dall’espansione. Questo processo avrebbe finito per far decadere il campo inflativo, chiamato appunto Campo Inflatone e responsabile dell’inflazione iniziale, verso uno stato abbastanza stabile chiamato falso vuoto e provocando una transizione di fase dello stesso campo che ha quindi dato origine a tutta la materia, compresa ovviamente quella oscura, e tutta l’energia che oggi osserviamo nell’Universo.

Permettetemi un breve digressione: Quando accendiamo una candela, facciamo esplodere qualcosa, che sia un esplosivo al plastico oppure del granturco per fare il pop corn, o più semplicemente sentiamo sulla pelle il calore del sole che ha origine nelle reazioni termonucleari al centro della nostra stella, quella è ancora l’energia, riprocessata in migliaia di modi diversi, che scaturì col Big Bang.

Fu appunto quest’era inflattiva, dominata dal campo inflatone a dilatare così tanto l’Universo da fargli assumere l’aspetto così sorprendentemente piatto che oggi conosciamo, una curvatura così ampia da sembrate piatta 1, così vicina al canonico valore di \(\Omega =1\).

L’espansione post inflazionistica: il problema della densità

Se volete dilettarvi sulla transizione di fase, provate a gettare una tazzina d’acqua bollente nell’aria fredda abbondantemente sotto zero. Più o meno è lo stesso processo accaduto al campo inflatone: un campo energetico (l’ acqua calda nella tazzina) che viene liberata nell’aria super fredda (universo inflazionato). Il nevischio sono le particelle scaturite dalla transizione di fase dell’acqua.

Con il suo decadimento, la spinta del campo inflatone cessa di essere il motore dell’espansione dell’Universo ma la spinta continua per inerzia, con una piccola differenza: la presenza della materia.
Ormai il campo inflatone è decaduto  attraverso un cambiamento di fase che ha dato origine a tutta la materia che osserviamo direttamente e indirettamente oggi nel cosmo. Piccole fluttuazioni quantistiche in questa fase possono essere state le responsabili della formazione di buchi neri primordiali [cite]http://ilpoliedrico.com/2016/06/materia-oscura-e-se-fossero-anche-dei-buchi-neri.html[/cite]. Ma al di là di quale natura la materia essa sia, materia ordinaria, materia oscura, antimateria, essa esercita una debolissima forza di natura esclusivamente attrattiva su tutto il resto; la forza gravitazionale. 
Quindi, come previsto dalle succitate equazioni di Friedmann, è la naturale attrazione gravitazionale prodotta dalla materia a ridurre quasi ai ritmi oggi registrati per l’espansione.
Ma tutta la materia presente nell’Universo comunque non pare sufficiente a frenare e fermare l’espansione.
La densità critica teorica dell’Universo \(\rho_c\) è possibile calcolarla partendo proprio dal valore dell’espansione metrica del cosmo espressa come Costante di Hubble \(H_0\) [cite]http://arxiv.org/abs/1604.01424[/cite] secondo le più recenti stime:
$$\rho_c = \frac{3{H_{0}}^2}{8\pi G}$$ 
Assumendo che \(H_0\) valga 73,24 km/Mpc allora si ha un valore metrico di $$H_0=\frac{(73,24\times 1000)}{3,086\times 10^{22}}= 2,3733\times 10^{-18} m$$
Quindi $$ \frac{3\times {2,3733\times 10^{-18}}^2}{8\times\pi\times 6,67259^{-11}}=1,00761^{-26} kg/m^3$$
Conoscendo il peso di un singolo protone (1,67 x 10-24 grammi) o al noto Numero di Avogadro che stabilisce il numero di atomi per una data massa, si ottiene che $$ \frac{1,00761\times 10^{-26}\times 1000}{1,67\times 10^{-24}}= 6,003 $$che sono appena 6 atomi di idrogeno neutro per metro cubo di spazio (ovviamente per valori \(H_0\) diversi anche il valore assunto come densità critica \(\rho_c\) cambia e di conseguenza anche il numero di atomi per  volume di spazio).
Ora se volessimo vedere quanta materia c’è nell’Universo potremmo avere qualche problema di scala. Assumendo una distanza media tra le galassie di 2 megaparsec e usando la massa della nostra galassia a confronto, 2 x 1042 chilogrammi, otterremo all’incirca il valore \(\rho\) quasi corrispondente a quello critico (5 atomi per metro cubo di spazio). Eppure, se usassimo come paragone l’intero Gruppo Locale (La Via Lattea, la Galassia di Andromeda, più un’altra settantina di galassie più piccole) che si estende per una decina di Mpc di diametro per una massa complessiva di appena 8,4 x 1042 kg [cite]http://arxiv.org/abs/1312.2587[/cite], otteniamo un valore meno di cento volte inferiore (0,04 atomi per metro cubo di spazio). E su scala maggiore la cosa non migliora, anzi.
L’Universo appare per quel che è oggi, un luogo freddo e desolatamente vuoto, riscaldato solo dalla lontana eco di quello che fu fino a 380 mila anni dopo il suo inizio.
(fine seconda parte)

Zenone , Olbers e l’energia oscura (prima parte)

Mi pareva di aver già trattato in passato lo spinoso problema dell’Energia Oscura. Questo è un dilemma abbastanza nuovo della cosmologia (1998 se non erro) e sin oggi il più incompreso e discusso (spesso a sproposito). Proverò a parlarne partendo da lontano …

[video_lightbox_youtube video_id=”HRoJW2Fu6D4&rel=false” auto_thumb=”1″ width=”800″ height=”450″ auto_thumb=”1″]Alvy: «L’universo si sta dilatando»
Madre: «L’universo si sta dilatando?»
Alvy: «Beh, l’universo è tutto e si sta dilatando: questo significa che un bel giorno scoppierà, e allora quel giorno sarà la fine di tutto»
Madre: «Ma sono affari tuoi, questi?»
(Io e Annie, Woody Allen 1997)

Attorno al V secolo a.C. visse un filosofo che soleva esprimersi per paradossi. Si chiamava Zenone di Elea e sicuramente il suo più celebre fu quello di “Achille e la tartaruga“.
In questo nonsense Zenone affermava che il corridore Achille non avrebbe mai potuto raggiungere e superare una tartaruga se questa in un’ipotetica sfida fosse partita in vantaggio indipendentemente dalle doti del corridore; questo perché nel tempo in cui Achille avesse raggiunto il punto di partenza della tartaruga, quest’ultima sarebbe intanto andata avanti e così via percorrendo sì spazi sempre più corti rispetto ad Achille ma comunque infiniti impedendo così al corridore di raggiungere mai l’animale. Si narra anche che un altro filosofo,  Diogene di Sinope, a questo punto del racconto si fosse alzato e camminato, dimostrando l’infondatezza di quel teorema.
È abbastanza evidente l’infondatezza empirica di quel paradosso, nella sua soluzione Aristotele parlava di spazio e di tempo divisibili all’infinito in potenza ma non di fatto, una nozione oggi cara che si riscopre nella Meccanica Quantistica con i concetti di spazio e di tempo di Planck, ma ragionare su questo ora non è il caso.
Piuttosto, immaginiamoci cosa succederebbe se lo spazio tra \(A\) (la linea di partenza di Achille) e \(B\) (la tartaruga) nel tempo \(t\) che impiega Achille a percorrerlo si fosse dilatato. Chiamiamo \(D\) la distanza iniziale e \(v\) la velocità costante con cui Achille si muove: nella fisica classica diremmo che \(D\) è dato da \(t \times v\), ovvio. Ma se nel tempo \(t/2\) la \(D\) è cresciuta di una lunghezza che chiameremo \(d\), alla fine quando Achille coprirà la distanza \(D\), il punto \(B\) sarà diventato \(D + 2d\) e la tartaruga non sarebbe stata raggiunta nel tempo finito \(t\) neppure se fosse rimasta ferma.

Animazione artistica del Paradosso di Olbers.

Animazione artistica del Paradosso di Olbers.

Se sostituissimo ad Achille un quanto di luce, un fotone come ad esempio il buon vecchio Phòs, e alla pista della sfida il nostro Universo, avremmo allora ricreato esattamente il medesimo quadro fisico. Nel 1826 un medico e astrofilo tedesco, Heinrich Wilhelm Olbers, si chiese perché mai osservando il cielo di notte questo fosse nero. Supponendo che l’universo fosse esistito da sempre, fosse infinito e isotropo (oggi sappiamo che non è vera quasi nessuna di queste condizioni e l’Universo è isotropo solo su grande scala, ma facciamo per un attimo finta che lo siano), allora verso qualsiasi punto noi volgessimo lo sguardo dovremmo vedere superfici stellari senza soluzione di continuità. Questa domanda in realtà se l’erano posta anche Keplero, Isaac Newton e Edmund Halley prima di lui ma non sembrava allora forse una questione importante come invece lo è.
138 anni dopo, nel 1964, due ricercatori della Bell Telephone Company che stavano sperimentando un nuovo tipo di antenna a microonde, Arno Penzias e Robert Wilson [cite]http://ilpoliedrico.com/2014/03/echi-da-un-lontano-passato-la-storia.html[/cite] scoprirono uno strano tipo di radiazione che pareva provenire con la stessa intensità da ogni punto del cielo. Era la Radiazione Cosmica di Fondo a Microonde (Cosmic Microwave Background Radiation) che l’astrofisico rosso naturalizzato statunitense George Gamow negli anni ’40 aveva previsto 1 [cite]https://arxiv.org/abs/1411.0172[/cite] sulle soluzioni di Alexander Friedmann che descrivono un universo non statico come era stato dimostrato dal precedente lavoro di Hubble e Humason sulla recessione delle galassie. Questa intuizione è oggi alla base delle attuali teorie cosmologiche che mostrano come i primi istanti dell’Universo siano stati in realtà dominati dall’energia piuttosto che la materia, e che anche l’Universo stesso ha avuto un’inizio temporalmente ben definito – anzi il tempo ha avuto inizio con esso – circa 13,7 miliardi di anni fa, giorno più giorno meno. Il dominio dell’energia nell’Universo durò fino all’epoca della Ricombinazione, cioè fin quando il protoni e gli elettroni smisero di essere un plasma caldissimo e opaco alla radiazione elettromagnetica e si combinarono in atomi di idrogeno. In quel momento tutto l’Universo era caldissimo (4000 K, quasi come la superficie di una nana rossa). E qui che rientra in gioco il Paradosso di Olbers: perché oggi osserviamo che lo spazio fra le stelle e le galassie è freddo e buio permeato però da un fondo costante di microonde? Per lo stesso motivo per cui in un tempo finito \(t\) Achille non può raggiungere la linea di partenza della tartaruga, lo spazio si dilata.
Electromagneticwave3DI fotoni, i quanti dell’energia elettromagnetica come Phòs, si muovono a una velocità molto grande che comunque è finita, 299792,458 chilometri al secondo nel vuoto, convenzionalmente indicata con \(c\). Queste particelle, che appartengono alla famiglia dei bosoni, sono i mediatori dei campi elettromagnetici. La frequenza di oscillazione di questi campi in un periodo di tempo \(t\) ben definito (si usa in genere per questo il secondo: \(f= 1/t\)) determina la natura del fotone e è indicata con \(f\): più è bassa la frequenza e maggiore la lunghezza d’onda: frequenze molto basse sono quelle delle onde radio (onde lunghe e medie, che in genere corrispondono alle bande LF e  AM della vostra radio, anche se AM sarebbe un termine improprio 2), poi ci sono le frequenze ben più alte per le trasmissioni FM 3, VHF, UHF, microonde, infrarossi, luce visibile, ultravioletti, raggi X e Gamma, in quest’ordine. Tutte queste sono espressioni del campo elettromagnetico si muovono nello spazio alla medesima velocità \(c\), quello che cambia è solo la frequenza: $$f=\frac{c}{\lambda}$$
Ma è anche vero che una velocità è l’espressione di una distanza \(D\) per unità di tempo (\( D=t \times v\)), pertanto nel caso della luce potremmo anche scrivere che \(D=t \times c\). Ma se \(D\) cambia mentre \(c\) è costante, allora è anche \(t\) a dover cambiare. Per questo ogni variazione delle dimensioni dello spazio si ripercuote automaticamente nella natura dei campi associati ai fotoni: un aumento di \(D\) significa anche un aumento della lunghezza d’onda, quello che in cosmologia si chiama redshift cosmologico. Potremmo vederla anche come l’aumento della distanza tra diversi punti di un’onda con i medesimi valori del campo elettromagnetico (creste o valli) ma è esattamente la stessa cosa.
Per questo percepiamo buio il cielo: la natura finita e immutabile della velocità della luce trasla verso frequenze più basse la natura della luce stessa, tant’è che quello che noi oggi percepiamo la radiazione cosmica di fondo a microonde con una temperatura di appena 2,7 kelvin è la medesima radiazione caldissima che permeava l’intero Universo  380000 anni dopo che si era formato.
La migliore stima dell’attuale ritmo di espansione dell’Universo è di 73,2 chilometri per megaparsec per secondo, un valore enormemente piccolo, appena un decimo di millimetro al secondo su una distanza paragonabile a quella che c’è tra il Sole e la stella più vicina. Eppure l’Universo è così vasto che questo è sufficiente per traslare verso lunghezze d’onda maggiori tutto quello che viene osservato su scala cosmologica, dalla luce proveniente da altre galassie agli eventi parossistici che le coinvolgono. Questo perché l’effetto di stiramento è cumulativo, al raddoppiare della distanza l’espansione raddoppia, sulla distanza di due megaparsec lo spazio si dilata per 146,4 chilometri e così via, e questo vale anche per il tempo considerato, in due secondi la dilatazione raddoppia.
Le implicazioni cosmologiche sono enormi, molto più dell’arrossamento della luce cosmologico fin qui discusso. Anche le dimensioni dello stesso Universo sono molto diverse da quello che ci è dato vedere. Noi percepiamo solo una parte dell’Universo, ciò che viene giustamente chiamato Universo Osservabile che è poi è la distanza che può aver percorso il nostro Phòs nel tempo che ci separa dal Big Bang, 13,7 miliardi di anni luce.

Ora dovrei parlare del perché l’Universo si espande e del ruolo dell’Energia Oscura in tutto questo, ma preferisco discuterne in una seconda puntata. Abbiate pazienza ancora un po’.
Cieli sereni.

Energia oscura e anisotropia nella radiazione cosmica di fondo

Sono passati almeno 15 anni da  quando è stato scoperto che il nostro Universo subisce una spinta repulsiva che lo sta accelerando, ossia che le sue dimensioni, contrariamente a quanto si era finora supposto, crescono più di quanto la spinta iniziale del Big Bang e al contrario la reciproca attrazione della materia che lo frena possano spiegare.

le varie ipotesi evolutive dell’Universo.
Credit: Il Poliedrico

Nel giugno scorso parlai di un tema particolarmente scottante in cosmologia 1: l’accelerazione dell’espansione dell’universo.
Questo è un fenomeno inflattivo che fu scoperto alla fine del XX secolo e che finora è stato spiegato soprattutto facendo ricorso a una misteriosa energia oscura spiegata prevalentemente in vari modi:
come costante cosmologica, quindi integrata nella natura stessa del tessuto dell’Universo e indicata con la lettera lambda Λ e valore repulsivo fisso wq = −1, o come quintessenza, ovvero una quinta forza fondamentale della natura 2 che può assumere una natura attrattiva o repulsiva a seconda del rapporto tra energia cinetica ed energia potenziale nell’universo.

[table “14” not found /]
Tabella 1

Stando alle teorie della quintessenza, questa divenne repulsiva – ossia cambiò stato come l’acqua diviene ghiaccio a 0° C. – circa 10 miliardi di anni fa a seguito dell’espansione iniziale dell’Universo.
Qui i valore repulsivo della quintessenza varia col variare delle condizioni locali nell’universo, ovvero questa avrà valori diversi tra i super ammassi di galassie dove la materia è concentrata e gli spazi di vuoto che li separano, come una ragnatela e soprattutto, come è ovvio, il suo valore cambia nel tempo.

Un team di astronomi dell’università di Portsmouth – R. CrittendenR. NicholA. J. Ross  –  e dell’università Ludwig Maximilians di Monaco di Baviera – T. Giannantonio – ha riproposto uno studio del 2008 3 4 sui dati del satellite Wilkinson Microwave Anisotropy Probe (WMAP) riguardante l’effetto Sachs-Wolfe integrato 5.
Questo nuovo studio 6 tiene conto di nuovi dati e nuovi metodi di indagine per venire incontro alle obiezioni sollevate dagli altri cosmologi 7 che sostanzialmente però non mutano il quadro emerso dalla precedente ricerca che conferma un valore specifico per il modello Lambda-CDM pari a w = −1 per redshift superiori  a 1.

L’effettto Sachs-Wolfe integrato.
Credit: Istituto di astronomia dell’Università delle Hawaii

Fu proprio R. Crittenden insieme a  Neil Turok nel 1996 a proporre di cercare nell’anisotropia secondaria della radiazione cosmica di fondo le prove della presenza di energia oscura nell’Universo 8 9.
I fotoni della CMB inizialmente isotropi avrebbre risentito dell’influenza gravitazionale delle grandi concentrazioni di materia diventando ovviamente leggermente più freddi per effetto della curvatura dello spazio locale ma avrebbero acquistato più energia (effetto blueshift) riscaldati dalla stessa materia autrice della curvatura. Questi due effetti in assenza di energia oscura si controbilancerebbero quasi esattamente – si devono comunque  tener conto anche di altri effetti come la focalizzazione gravitazionale, l’effetto Sunyaev-Zel’dovich etc. – ma l’energia oscura che dilata lo spazio consentirebbe alla CMB rilevata di avere un’impronta energetica leggermente più alta là dove le concentrazioni di massa l’hanno riscaldata.
Quindi la presenza di energia oscura si potrebbe rilevare confrontando le concentrazioni di materia conosciute nell’universo locale con le impronte delle fluttuazioni della CMB.
E in effetti importanti correlazioni pare che ci siano, tanto che il team di Portsmouth e Monaco parla che il  99,996% di queste sia da imputarsi all’energia oscura.

Comunque sia, il capitolo Energia Oscura non è affatto finito.  Il team di Crittenden si dice sicuro dei risultati ma manca la verifica di altri gruppi di ricerca e l’immancabile controrisposta dei cosmologi scettici. Ma soprattutto com’è fatta questa Energia Oscura?


Altri riferimenti:
http://www.ras.org.uk/news-and-press/219-news-2012/2167-dark-energy-is-real-say-portsmouth-astronomers

http://www.ifa.hawaii.edu/cosmowave/supervoids/