Principio di autorità e Riscaldamento Globale Antropogenico

Il principio di autorità descrive la propensione ad accettare —o imporre — un’affermazione come vera basandosi sulla reputazione, sul ruolo o sulla notorietà di chi la formula, anziché sulla solidità intrinseca delle prove che la supportano.
Si tratta di una scorciatoia cognitiva che molto spesso può condurre a fallacie logiche, specialmente in ambito scientifico, dove è fondamentale valutare criticamente fonti e argomentazioni.
Un po’ come dire ” …me lo ha detto mio cugino!” e quindi deve essere vero per forza, o “Lo dico io che sono il Megadirettore Galattico Duca Conte etc. e voi altri non avete titoli per smentire le mie affermazioni
Ma nel mondo reale non funziona così. In contesti scientifici, così come in filosofia e nel diritto, l’autorevolezza deve sempre essere sottoposta a un esame empirico o razionale, al fine di evitare gravi e talvolta grotteschi errori.

Il Cambiamento Climatico non ha niente a che vedere con le variazioni dell’orbita terrestre

Questo grafico mostra chiaramente due linee che vanno in direzioni opposte: l’irradianza solare totale (TSI, linea gialla): oscillazioni cicliche di ~11 anni (ciclo solare), ma con tendenza a lungo termine in calo (da ~1362 W/m² medi intorno agli anni ’80 a ~1360-1361 negli ultimi decenni) Dati SATIRE-T2 * e temperatura globale (linea rossa, GISTEMP 3.1 **): salita costante e accelerata, da ~0.2°C anomalia negli anni ’80 a +1.0°C+ oggi (rispetto al riferimento base 1951-1980, la tendenza è inequivocabile).

Nel mio recente articolo La CO₂ non è cibo per le piante: chimica reale contro bufale climatiche [1] ho smontato unna congettura fatalista tanto cara a coloro che, dopo aver negato per anni ogni evidenza che dimostrava l’aumento antropogenico della \(CO_{2}\), cercavano di farla digerire affermando che la \(CO_{2}\) è cibo per le piante.
Un’altra congettura cara ai climapiattisti più puri e negazionisti è quella di attribuire il Riscaldamento Climatico Antropogenico a non meglio precisate variazioni dell’orbita terrestre (ora colpa di Giove, ora di Venere, ora di entrambi) come nella miglior tradizione ‘strologica 1 fino a scomodare i  Cicli di Milankovitch (fa sempre ganzo usare termini e fenomeni che realmente non si comprendono giusto per darsi una certa importanza).

Non avendo altre argomentazioni a supporto delle loro congetture, nelle loro comparsate nelle trasmissioni-pollaio 2 in televisione questi vecchi arnesi iniziano la loro solita sequela di anatemi snocciolando titoli accademici e incarichi ricoperti con la presunzione di essere gli unici a poter parlare di Riscaldamento Globale verso chiunque gli si opponga, siano essi scienziati o attivisti informati.

L’orbita terrestre

Partiamo dai dati veri: Senza risalire oltre, diciamo dall’eone Proterozoico (2,5 miliardi di anni fa), l’orbita terrestre  sempre rimasta stabile a una distanza media di 149,6 milioni di chilometri [2].
Questo accade perché la massa della Terra (o meglio, del sistema Terra-Luna) è relativamente grande rispetto agli altri corpi minori e non subisce perturbazioni estreme da parte dei giganti gassosi del Sistema Solare, checché ne dicano gli ‘strologi.
Insomma, vista dalla Terra, la struttura complessiva del Sistema Solare è dinamicamente tranquilla e — per nostra fortuna — piuttosto noiosa.
Gli unici eventi che potrebbero alterare drasticamente l’orbita terrestre sono:

  • incontri ravvicinati con pianeti massicci,
  • passaggi di stelle vicine,
  • instabilità dinamiche del Sistema Solare.

Le ricostruzioni geologiche e astronomiche, però, non mostrano tracce di sconvolgimenti orbitali nel periodo fin qui considerato.

Geometria astronomica for dummies

1) Energia orbitale e semiasse maggiore

Per un’orbita kepleriana attorno a una stella, il semiasse maggiore \(a\) è legato all’energia specifica orbitale \(\epsilon\):

\[ \epsilon = – \tfrac{\mu}{2a} \]

dove

  • \(\mu = GM_{\odot}\) è il parametro gravitazionale 3
  • \(a\) è il semiasse maggiore
  • \(\epsilon\) è l’energia per unità di massa

Se non sono presenti altre forze dissipative, ma solo gravità newtoniana, \(\epsilon\; \text{e}\; a\) sono costanti. Le altre perturbazioni planetarie alterano l’eccentricità, l’inclinazione, gli argomenti angolari, ma il semiasse maggiore resta praticamente invariato al primo ordine.

2) Perché le variazioni sono minime: le equazioni di Lagrange per \(a\)

In teoria, il semiasse maggiore può variare per effetto di un potenziale perturbativo \(R\)
(dovuto agli altri pianeti, ecc.). Le equazioni planetarie di Lagrange danno:

\[ \tfrac{da}{dt}=\tfrac{2}{na} \tfrac{\partial R}{\partial M} \]

dove

  • \(n =\sqrt{\tfrac{\mu}{a^3}}\) è il moto medio
  • \(M\) è l’anomalia media
  • \(R\) è il potenziale perturbativo medio

Facendo la media su molte orbite (per esempio con approssimazione secolare, il termine \(\tfrac{\partial R}{\partial M}\)  tende a zero:

\[ \left\langle \tfrac{da}{dt} \right\rangle \approx 0 \]]

ovvero il semiasse maggiore può oscillare, ma non deriva mai sistematicamente [3].

3) Effetto della perdita di massa solare

E qui la cosa si fa parecchio interessante. Tutte le stelle durante tutto il loro ciclo vitale perdono una piccola frazione della propria massa sotto forma di vento stellare e radiazione; anche il Sole non fa eccezione
Se la massa del Sole diminuisce nel tempo (\(M_{\odot} \)) diminuisce lentamente nel tempo, il parametro gravitazionale \(\mu =\;GM_{\odot}\) si riduce e le orbite dei pianeti si espandono.
Per un lento calo della massa centrale, al primo ordine vale la relazione (problema kepleriano a due corpi):

\[\tfrac{\overset{.}a}{a} \approx – \tfrac{\overset{.}M_{\odot}}{M{\odot}}\]
dove \(a\) è il semiasse maggiore dell’orbita terrestre.
Assumendo  \(\tfrac{\overset{.}M_{\odot}}{M{\odot}}\) circa costante su tempi geologici, si integra ottenendo:

\[ a(t) \approx a_{0}  \tfrac{M_{\odot} \;(0)}{M_{\odot} \;(t)}  \]
Osservazioni e modelli suggeriscono per il Sole un tasso relativo di perdita di massa dell’ordine di:

\[ \tfrac{\overset{.}M_{\odot}}{M{\odot}} \approx 9 \times 10^{-14}\;yr^{-1} \]
somma di vento solare e conversione massa–energia. Prendiamo così il nostro intervallo di tempo dal Proterozoico:
\[t=2.5 \times 10^{9}\;\text {anni} \]

Con \(a_{0} \simeq 1,496\times 10^{8}\;km \), la variazione al primo ordine del semiasse maggiore è:

\[ \Delta a \simeq a_{0}\left| \tfrac{\overset{.}M_{\odot}}{M{\odot}} \right|t\]
sostituendo i valori:
\[ \Delta a \simeq 1,496 \times 10^{8}\;km \times 8,95 \times 10^{-14}\;yr^{-1}\times 2,5 \times 10^{9}\;yr  \]
Pertanto:
\[ \Delta a \approx1,496 \times 10^{8}\;km \times 2,2375 \times 10^{-4} \approx 3,35 \times 10^{4}\;km \]

In altri termini, dal Proterozoico (2.5 miliardi di anni fa) il semiasse maggiore dell’orbita terrestre è aumentato di 33500 chilometri su una distanza di 149,6 milioni di chilometri.
\[ \tfrac{\Delta a}{t} \approx \tfrac{3,35\times 10^{4}\;\text{km}}{2,5\times^{9}\;\text{anni}}\sim 1,34 \;\text{cm/anno} \]
Un’inezia, se oggi, con un’eccentricità dell’orbita di 0,0167 (quasi circolare) la differenza tra afelio e perielio è di \(4.999.627\; km \approx 5 \times 10^{6}\;km\).

Ma mica è finita qui.

4) La formula di Gough  [4]

Il Sole, proprio come tutte le altre stelle di tipo G nel Ramo Principale, aumenta lentamente la propria luminosità mentre:

  • converte idrogeno in elio nel nucleo
  • il nucleo si contrae
  • la temperatura centrale aumenta
  • la potenza irradiata cresce

I modelli di evoluzione solare mostrano una crescita quasi lineare su scale di centinaia di milioni di anni.

\[ \tfrac{L(t)}{L_{0}} \approx 1-\tfrac{2}{5}\left( 1-\tfrac{t}{t_{0}} \right) \]
ovvero un aumento di luminosità di circa il 30% da quando è nato il Sole. Un tasso medio ≈ 0,7% ogni 100 milioni di anni. Ai fini pratici, un aumento di luminosità di questa portata comporta un aumento della costante solare di \(9-10\;W/m^{2}\), ossia \(\sim 1^{\circ}C \) ogni 100 milioni di anni.  Anche qui, neanche il 2% rispetto al Proterozoico.

Concludendo questa prima carrellata tra geometria astronomica e astrofisica cari pseudoesperti climapiattisti non sono le orbite o la luminosità solare i responsabili del Riscaldamento Globale.
Ma so di certo che tirereste la scusa: Ma allora i Cicli di Milankovitch?

I Cicli di Milankovitch

I cicli di Milankovitch descrivono i cambiamenti a lungo termine nella traiettoria terrestre, proposta negli anni ’20 dal geofisico e astronomo Milutin Milankovitch. Egli analizzò le variazioni dell’eccentricità terrestre, dell’inclinazione dell’asse e della precessione orbitale avvenute negli ultimi milioni di anni, individuando la correlazione tra tali parametri e i modelli climatici del pianeta, in particolare i cicli glaciali.
Attualmente, la  precessione assiale della Terra completa un intero ciclo di precessione all’incirca in ~ 26.000 anni.
Ma in un lontano passato non era così. La canonica interpretazione dei ciclo di Milankovitch non va oltre i 50 milioni di anni.

1) La precessione assiale

Regolari alternanze di strati bianchi, marrone-rossastri e grigio-blu, su una scala di circa 10 cm, sono interpretate dai ricercatori come tracce del ciclo di precessione dell’asse terrestre, visibile in primo piano a sinistra nell’immagine. Circa 2,46 miliardi di anni fa, tale ciclo aveva un periodo sensibilmente più breve – intorno agli 11.000 anni – rispetto agli attuali circa 21.000 anni, a causa della minore distanza tra Terra e Luna. La determinazione precisa del periodo dei cicli su piccola scala, e quindi della distanza Terra-Luna, può essere ottenuta confrontando il rapporto di spessore con i cicli su scala maggiore di 100.000 anni, osservabili sullo sfondo.
Credit: Frits Hilgen

Anche questa volta la geologia e la matematica ci sono di aiuto per ricostruire la storia — e la climatica — della Terra. Oggi la durata del giorno è di ~24 ore e la frequenza precessionale (precessione lunisolare o assiale) è ≈ 50,3″ per anno.
\[ \tfrac{360\;^{\circ}}{ 50,3^{\prime\prime}/anno} = \;\approx 25786 \; anni\]
Ma nel Proterozoico [5] non era così. il giorno durava 17 ore e la Luna era ad appena ≈ 216-220 mila chilometri di distanza. E siccome la frequenza di precessione \(\psi\) è direttamente proporzionale al reciproco della velocità angolare di rotazione terrestre \(\omega\):
\[ \psi \propto \tfrac{1}{\omega} \]
Non è quindi difficile dimostrare che nel Proterozoico il ciclo precessionale era molto più breve di oggi del 41%.

2) La precessione del perielio

Parallelamente, la rotazione ellittica dell’orbita influisce sull’alternanza delle stagioni e sulle variazioni orbitali con un periodo lento di ~ 112 mila anni. Questa si chiama precessione del perielio (o della linea degli apsidi).
Anch’essa non è costante nel tempo. È cambiata in modo significativo, ma per ragioni completamente diverse rispetto alla precessione degli equinozi.
La precessione del perielio è un movimento della stessa orbita ellittica terrestre. È causata principalmente dalle attrazioni gravitazionali degli altri pianeti, specialmente Giove e Saturno. La sua durata dipende quindi dalla configurazione del Sistema Solare.
Secondo il modello più accreditato, noto come Modello di Nizza e le sue successive evoluzioni [6], i pianeti giganti del Sistema Solare (Giove, Saturno, Urano e Nettuno) non si sono originati nelle attuali posizioni orbitali. Le interazioni gravitazionali con il disco residuo di gas e planetesimi, avvenute nel corso di lunghi periodi, hanno determinato la migrazione delle loro orbite. Questo processo graduale ha modificato in modo costante le influenze gravitazionali esercitate da ciascun pianeta sull’orbita terrestre, causando variazioni nel periodo della precessione del perielio.
Il Sistema Solare si configura come un sistema dinamico intrinsecamente caotico su scale temporali dell’ordine di milioni di anni. In tale contesto, le orbite planetarie non possono essere previste con precisione indefinita: piccole perturbazioni tendono ad amplificarsi, generando variazioni non lineari nei parametri orbitali, compreso il ciclo della precessione del perielio.
Nel recente passato geologico, ossia negli ultimi pochi milioni di anni, la durata di questo ciclo ha variato tra circa 100.000 e 130.000 anni, attestandosi intorno ai ~ 112.000 anni durante il Quaternario, con un impatto significativo sull’insorgenza delle ere glaciali.
Risalendo a centinaia di milioni di anni fa, nel Proterozoico, la configurazione orbitale della Terra era quasi certamente differente, determinando una durata diversa del ciclo. La stima esatta di tale valore è estremamente complessa, ma i modelli dinamici confermano che non si trattava di un parametro costante.
È fondamentale distinguere che questo ciclo è del tutto indipendente dalla presenza o dalla distanza della Luna. Quest’ultima influisce fortemente sulla precessione degli equinozi e sulle maree, ma esercita un’influenza trascurabile sull’orbita ellittica terrestre attorno al Sole, governata principalmente dall’interazione con gli altri pianeti.

3) La precessione climatica

Quest’altro ciclo di Milankovitch è invece la combinazione dei due illustrati qui sopra. È quindi abbastanza evidente che anche questo, attualmente lungo ~ 21 mila anni, è in realtà piuttosto variabile:
\[ \tfrac{1}{P_{clim}}= \tfrac{1}{P_{assiale}} + \tfrac{1}{P_{orbitale}} \]
In altre parole L’asse terrestre ruota (ciclo lento) e contemporaneamente l’intera ellisse orbitale ruota (ciclo ancora più lento). La posizione relativa tra la direzione dell’asse (che definisce le stagioni) e la direzione del perielio (il punto dell’orbita più vicino al Sole) cambia con una velocità che è la somma delle due velocità di rotazione. Ecco perché il periodo risultante è più corto di entrambi.

4) L’eccentricità dell’orbita

I cicli di Milanković NON sono “fissi”: derivano da frequenze secolari dei pianeti, chiamate:

g, g, g, g, g (precessione dei perieli)
s, s, s, s₄, s (precessione dei nodi)

Le frequenze gₙ (precessione dei perieli)

PianetaSimbologₙ (arcsec/anno)Ruolo
Mercuriog₁+5.59irrilevante per la Terra
Venereg₂+7.45fondamentale per il ciclo di 405 mila anni
Terrag₃+17.35precessione orbitale terrestre
Marteg₄+17.92modula i cicli da 100 mila e 2.4 milioni di anni
Gioveg₅+4.25modula il ciclo di 405 mila anni

Le frequenze sₙ (precessione dei nodi)

PianetaSimbolosₙ (arcsec/anno)Ruolo
Mercurios₁–5.59marginale
Veneres₂–7.06influenza obliquità
Terras₃–18.85ciclo obliquità di 41 mila anni
Martes₄–17.75modula obliquità e cicli lunghi
Gioves₅–6.57contributo minore

Questa spesso è una parte che pochi si soffermano a spiegare.

  • Il Ciclo “Ancorato” di 405.000 anni
    Questo ciclo ultra-lungo è principalmente una risonanza orbitale tra la precessione del perielio di Venere e quella della Terra. In parole povere, i punti dell’orbita più vicini al Sole (perielio) di questi due pianeti si “inseguono” nello spazio con un ritmo fisso e stabile, completando un ciclo completo ogni 405.000 anni.
    Giove, con la sua enorme massa, è il grande regolatore che rende possibile questa risonanza. La sua gravità domina la precessione del perielio di tutti i pianeti interni (Mercurio, Venere, Terra, Marte).
    \[ P= \tfrac{1}{\mid g_{_{2}}\;-\;g_{_{5}}\;\mid} \]
    Senza l’influenza stabilizzante di Giove, le orbite dei pianeti interni mostrerebbero un comportamento molto più caotico. Quindi, è più preciso dire: il ciclo di 405.000 anni è una risonanza tra Venere e Terra mediata dalla gravità di Giove.
    Stabilità: Questo è il ciclo di Milankovitch più stabile nel tempo. I calcoli e le evidenze geologiche suggeriscono che sia rimasto costante per almeno 250 milioni di anni e probabilmente per gran parte dell’era Fanerozoica. Per questo è chiamato il “pendolo geologico” o “cronometro” per calibrare la scala dei tempi geologici profondi.
  • I Cicli di ~100.000 e ~400.000 anni (Eccentricità)
    Questi cicli derivano dalla modulazione dell’eccentricità dell’orbita terrestre. Non sono semplici risonanze a due corpi, ma emergono dalla combinazione di cicli più brevi legati alle interazioni tra più pianeti.
    L’eccentricità \(e\) della Terra varia perché la sua orbita è continuamente perturbata dalle attrazioni degli altri pianeti. Matematicamente, la variazione di \(e\) può essere scomposta in una somma di molte componenti sinusoidali con periodi diversi.
    Un ciclo di ~100.000 anni: Questo è il risultato della combinazione di altri due cicli principali: uno
    legato alle interazioni Terra-Giove-Saturno, con un periodo di circa 95.000 anni e l’altro legato alle interazioni Terra-Marte, con un periodo di circa 99.000 anni (a volte citato come 120.000 anni, a seconda del modello) [7].
    La sovrapposizione (interferenza) di questi due segnali produce il picco di potenza dominante che osserviamo nei dati climatici degli ultimi milioni di anni intorno ai 100.000 anni.
    Ciclo di ~400.000 anni: Questo è un armonico del ciclo di 405.000 anni (\(\sim 405/1 = 405 \;\text{e}\; 405/4 ≈ 101\)), ma anche il risultato di altre interazioni a lungo termine nel sistema solare.

Questo contesto illustra il motivo per cui il ciclo glaciale di circa 100.000 anni, caratteristico degli ultimi 800.000 anni, rimane uno dei fenomeni più enigmatici e dibattuti della paleoclimatologia. Il forcing astronomico legato all’eccentricità, su questa scala temporale, risulta infatti estremamente debole, producendo solo lievi variazioni di insolazione. Perché questo segnale minimo diventi il ciclo glaciale predominante, il sistema climatico terrestre – comprendente calotte di ghiaccio, oceani e concentrazioni atmosferiche di \(CO_{2}\) – deve rispondere in modo non lineare e con meccanismi di amplificazione significativi.
In epoche geologiche più remote, quando la disposizione dei continenti o i livelli di \(CO_{2}\) differivano sensibilmente, altri cicli astronomici, come quello di 41.000 anni legato alle variazioni dell’obliquità, esercitavano un’influenza dominante sulle oscillazioni climatiche globali.

Cicli di Milankovitch

FenomenoPeriodoCausaPianeti coinvolti
Eccentricità lunga405 mila anniRisonanza g₂ - g₅Venere + Giove
Eccentricità breve95-125 mila annig₄ dominanteMarte
Eccentricità molto lunga2,4 milioni annig₃ - g₄Terra + Marte
Obliquità41 mila annis₃, s₄Terra + Marte
Precessione assiale25786 annicoppia Sole + Luna
Precessione orbitale112 mila annig₃Terra
Precessione climatica19-23 mila annicombinazioneTerra + Marte + Giove
gₙ = frequenze di precessione dei perieli (orbite)
sₙ = frequenze di precessione dei nodi (piani orbitali)
Tutti i periodi, eccetto il primo che è stabile, si riferiscono ai periodi attuali.

Conclusione

Bisogna però essere consapevoli che l’anidride carbonica di per sé non è un agente inquinante. Al contrario essa è indispensabile per la vita sul nostro pianeta. … L’origine antropica del riscaldamento globale è però una congettura non dimostrata, dedotta solo da alcuni modelli climatici, cioè complessi programmi al computer, chiamati General Circulation Models. La responsabilità antropica del cambiamento climatico osservato nell’ultimo secolo è quindi ingiustificatamente esagerata e le previsioni catastrofiche non sono realistiche …
L’illusione di governare il clima.
Manifesto negazionisti climatici italiani

I Cicli di Milankovitch non sono di certo una novità per chi segue da vicino l’astronomia. E le risonanze gravitazionali dei pianeti vicini (Venere e Marte) e dell’imponente nostro gigante gassoso (Giove, ma in misura minore anche Saturno) che agiscono sulla linea delle absidi e l’eccentricità dell’orbita planetaria non sono una scoperta dei climapiattisti di oggi.
Ho anche dimostrato, casomai ce ne fosse bisogno per qualche incauto senza mestiere, che il semiasse maggiore dell’orbita terrestre è costante nel tempo (non lo dico io ma le leggi di Keplero).
Quindi no. non ci sono state negli ultimi 170 anni variazioni orbitali repentine o fluttuazioni nella luminosità/temperatura del Sole [8] per giustificare il riscaldamento globale in atto [9].

Vedere poi, che tra i peggiori negazionisti italiani figurano anche alcuni professori universitari, mi provoca sgomento.
Come si può leggere, da uno stralcio del loro manifesto del 17 giugno 2019, riportato qui a fianco, di strafalcioni ne vedo parecchi, a cominciare dal loro motto che la \(CO_{2}\) non è un inquinante ma che è indispensabile alla vita del pianeta.
Ma sicuro, senza una atmosfera la temperatura di equilibrio della Terra sarebbe intoro ai 255 °K, ossia -18 °C. Ma la presenza di una atmosfera con una modesta quantità di anidride carbonica compresa tra i 200 e 300 ppm permette di avere una temperatura media planetaria compresa fra i 13 e i 15 °C, poco sopra il punto triplo dell’acqua.
I climapiattisti nostalgici di oggi spesso riportano le condizioni climatiche del Giurassico come esempio di come la vita prosperava sulla Terra nonostante che l’anidride carbonica atmosferica fosse ben più abbondate di oggi

Nel Giurassico (circa 200-145 milioni di anni fa), nonostante che il Sole fosse circa l’1% più debole di oggi (vedi sopra i lavori di Douglas Gouth) il clima era complessivamente più caldo e umido rispetto a quello attuale, con temperature medie globali superiori di 4-7 °C e minori differenze termiche tra equatore e poli.
In quell’era si verificarono tuttavia episodi di riscaldamento globale che determinarono crisi ecologiche e marine: picchi termici provocarono ampie zone oceaniche povere di ossigeno e estinzioni di massa, evidenziando la vulnerabilità degli ecosistemi ai cambiamenti climatici.
… In conclusione, posta la cruciale importanza che hanno i combustibili fossili per l’approvvigionamento energetico dell’umanità, suggeriamo che non si aderisca a politiche di riduzione acritica della immissione di anidride carbonica in atmosfera con l’illusoria pretesa di governare il clima.
L’illusione di governare il clima.
Manifesto negazionisti climatici italiani

Nel Mesozoico, incluso il Giurassico, la Terra si trovava in una fase di “clima serra”, molto più caldo rispetto a oggi: l’innalzamento del livello marino favorì la formazione di rocce sedimentarie marine, tipiche di ambienti caldi e umidi. Nei periodi di intenso riscaldamento (eventi anossici oceanici), legati a concentrazioni di \(CO_{2}\) fino a 1000-1500 ppm, causarono fioriture algali e gravi estinzioni marine.

Ai poli le temperature erano sensibilmente più alte, con ridotta differenza termica rispetto all’equatore.
Oggi tutti questi eventi estremi sono oggetto di studio per comprendere le reazioni degli ecosistemi ai cambiamenti climatici e alla perdita di biodiversità, offrendo importanti spunti per affrontare le attuali crisi ambientali.
Tornando al presente, invece la specie umana e la sua civiltà si sono tuttavia evoluti in condizioni molto diverse da quelle del Giurassico, con temperature medie globali di 14-15 °C e \(CO_{2}\) intorno a 250-280 ppm; nel Giurassico, L’Umanità non si sarebbe mai potuta evolvere fino allo stadio odierno.
Ridentem dicere verum: quid vetat?

È un’antica locuzione latina del poeta romano Orazio, che oggi potremmo riassumere in Arlecchino si confessò burlando.
In questo caso, potremmo riassumere tutto il pomposo manifesto negazionista climatico nella sua più semplice e provocatoria frase: data la fondamentale importanza dei combustibili fossili per l’approvvigionamento energetico globale, si raccomanda di evitare politiche di riduzione indiscriminata delle emissioni di anidride carbonica. 

Questo è il vero messaggio che si cela dietro al negazionismo climatico e ai deliranti sproloqui sui social dei climapiattisti: le variazioni orbitali della Terra, i cicli di Milankovitch, la \(CO_{2}\) è cibo per le piante [10], e tutte le altre menate possibili e immaginabili — fino a inventarsi falsi storici — per sostenere che l’eccesso di anidride carbonica rispetto ai livelli preindustriali non è responsabile del Riscaldamento Globale non è scientificamente sostenibile.


 

  • * SATIRE-T2 [11]
  • ** GISTEMP 3.1  (4) [12]

La CO₂ non è cibo per le piante: chimica reale contro bufale climatiche

Spesso appaiono in televisione, sui giornali e, soprattutto sui social, improbabili esperti tuttologi che affermano “la CO2 è cibo per le piante!“.
Il divertente, se non ci fosse da piangere, questi pseudoesperti sono più o meno anche coloro che attribuiscono il Riscaldamento Globale Antropogenico ai cicli di Milankovitch 1 e altre menate che ho goliardicamente riassunto nella prima immagine qui sotto.
Se non ci fosse da piangere, sarebbe da riderci su, come quando al circo appare il clown col naso rubizzo e guantoni enormi che, imitando il verso dei leoni marini, cerca di  distogliere gli spettatori da un imprevisto.
Ma nel nostro caso il cambiamento Climatico attuale non è un imprevisto, la comunità scientifica ne dibatte da mezzo secolo e proposto soluzioni mai prese seriamente in considerazione dai legislatori internazionali.

Il ciclo del carbonio nelle piante

Le stupidaggini di un climapiattista medio. Ripete sempre le stesse bischerate.

La \(CO_{2}\) è un gas, altrimenti chiamato anidride carbonica [13]. Non è cibo per le piante ma un gas serra che contribuisce tra il 9 e 26% a trattenere la radiazione infrarossa, proveniente dal Sole e riflessa dalla superficie, nella troposfera.  Certo, il vapore acqueo lo è molto di più – 36-70% -ma a differenza di questo i cui effetti durano pochi giorni, le molecole di anidride carbonica hanno una emivita nell’atmosfera di almeno 30-100 anni.

Per capire meglio il ruolo dell’anidride carbonica nella fotosintesi delle piante, riassumiamo come questa funziona:
Nella sua espressione più brutale la fotosintesi potremmo descriverla così

\[ 6\;CO_{2} + 6\; H_{2}O= + hv \longrightarrow C_{6}H_{12}O_{6}+ 6\;O_{2} \]

dove \(hv\) è un quanto di energia luminosa 2. Naturalmente questa e una semplificazione estrema: il glucosio \( C_{6}H_{12}O_{6}\) non è prodotto direttamente, ma questo lo ritengo un modo per indicare come avviene la fissazione del carbonio [14].
Ma le piante, seppur autotrofe, non sono diverse da ogni altro sistema biologico vivente: devono respirare.
E la respirazione avviene tramite glicolisi: la precedente molecola di glucosio viene scissa così:
\[ C_{6}H_{12}O_{6}+ 6O_{2} \to  6CO_{2} + 6H_{2}O + ATP \left( \text{adenosina trifosfato} \right) \]
e 6 molecole di anidride carbonica e 6 molecole d’acqua (che poi vedremo quanto esse saranno importanti in seguito) sono di nuovo rilasciate nell’ambiente.
E l’adenosina trifosfato è la fonte energetica del metabolismo cellulare.
Nella Respirazione il bilancio della fissazione della \(CO_{2}\) è nullo.

Poi c’è l’accumulo energetico a medio-lungo termine dell’energia  (un po’ come le nostre riserve di grasso) in due polisaccaridi vegetali: amilosio e amilopectina.
\[ \text{Glucosio} \to \overset{amido\;sintasi}{\left( C_{6}H_{12}O_{6} \right)_{n}} \]
Qui, per la prima volta, il carbonio viene integrato nelle piante.

Poi c’è la cellulosa, quella che ha la funzione di creare le pareti cellulari e che offre rigidità e protezione alle piante.
Qui il glucosio viene convertito in UDP-glucosio e poi in β-glucano (un altro polisaccaride complesso).
\[ \text{UDP-glucosio}\to \left( \beta\text{-1,4-glucano} \right)_{n} \]
E anche qui il carbonio contenuto nel glucosio rimane  fissato nelle piante.

Poi c’e la traslocazione del carbonio attraverso il floema [15] [16] sottoforma di linfa elaborata (acqua e saccarosio) verso gli organi non fotosintetici (radici, frutti, semi).
Qui il glucosio si combina col fruttosio (precedentemente prodotto dalla glicolisi di altre molecole di glucosio fosfato durate i Ciclo di Calvin [17])e si trasforma in saccarosio.
\[ \text{glucosio + fruttosio}\to \text{saccarosio}\]

ecco uno schema riassuntivo:

\[ \overset{\text{Fotosintesi} \longrightarrow \text{Glucosio}} \\
\left\{
{
\begin{array}{l}
\text{Respirazione (energia e nessun sequestro di }CO_{2}\text{)} \\
\text{Amido (riserva)} \\
\text{Cellulosa (struttura)} \\
\text{Saccarosio (trasporto)} \\
\text{Metaboliti vari (biosintesi)}
\end{array}
}
\right.
\]

 

La \(CO_{2}\) non è cibo per le piante

Nel Carbonifero (358-303 milioni di anni fa) la CO₂ era simile ai livelli attuali, la pressione parziale di O₂ era molto più alta (fino al 35%) e il Sole era più debole (2-3% meno di oggi).
La produttività primaria era enorme e la biosfera sequestrava carbonio in modo massiccio nella litosfera. Oggi stiamo liberando in atmosfera, in pochi decenni, il carbonio che la Terra aveva sotterrato in milioni di anni: il sistema climatico attuale non ha analoghi diretti nel passato.

Illustrare sommariamente la biochimica delle piante era necessario per capire perché la semplice anidride carbonica non è affatto cibo per le piante ma è soltanto una componente di un sistema molto più complesso a cui servono anche acqua \(H_{2}O\), fosforo \(P\), azoto \(N\) etc. per funzionare correttamente.
È vero, spesso in serra si usano bruciatori per aumentare la \(CO_{2}\) nell’ambiente chiuso per aumentare la resa delle colture, ma vengono forniti anche concimi e acqua in proporzione per aumentare la biomassa coltivata.
Ma nel mondo reale non funziona così: Anche se un aumento di qualche ppm di \(CO_{2}\) nella troposfera può aumentare la biomassa vegetale momentaneamente.
Questo maggiore apporto porta le piante in ambiente naturale a assorbire più  acqua e gli altri oligoelementi necessari al loro sviluppo a scapito del suolo. Livelli più alti di \(CO_{2}\) atmosferica spingono le piante ad produrre minori quantità di proteine su terreni poveri. Come confermato da una mastodontica meta-analisi del 2025 [18]. Circa 59.000 campioni, 43 colture mostrano un calo pesante dello zinco e anche le proteine ​​e il ferro calano in modo significativo. Non è solo diluizione: è un vero cambiamento nella composizione del cibo. E quando il terreno rimane povero o sterile c’è poco da fare: lì le biomasse vegetali si ridurranno o non cresceranno più affatto.
Questo significa che in sostanza più \(CO_{2}\) troposferica alla lunga porta alla desertificazione del suolo.

L’effetto serra

Poi c’è l’effetto serra, che complica ulteriormente le cose.
Le temperature dell’aria variano ampiamente su scale temporali che spaziano da ore a giorni, settimane, mesi e stagioni. In quanto organismi autotrofi sessili, le piante sono esposte a questa ampia gamma di condizioni termiche e hanno sviluppato numerose strategie per percepire e affrontare i cambiamenti di temperatura, e, in misura limitata, regolarne la propria. Sebbene tali adattamenti consentano alle piante di prosperare in diverse condizioni di crescita, la temperatura influisce direttamente su tutti gli aspetti delle attività biochimiche e biofisiche a livello cellulare, d’organo e dell’intera pianta. Le temperature delle piante spesso differiscono da quelle dell’aria a causa dell’assorbimento di radiazioni, della traspirazione e di altri fattori, ma l’aumento termico dell’aria e della chioma è legato al bilancio energetico, determinando un incremento diretto della temperatura vegetale.
Le piante possono acclimatare processi metabolici chiave al variare delle condizioni di crescita, ma tali adattamenti mirano principalmente alla sopravvivenza, non sempre al mantenimento di un’attività fisiologica ottimale per la massima crescita o resa.
Proiezioni indicano che temperature superiori ai 30 °C possono ridurre le rese delle colture principali, una soglia spesso superata e destinata ad aumentare con il riscaldamento globale.
Esperimenti su colture di soia esposte a 3.5°C  sopra altri lotti di controllo, ossia con temperature massime giornaliere che variavano da 32,5°C a 41,5°C, hanno mostrato un  calo della fotosintesi del 15%. Per cui, anche se un più alto livello di \(CO_{2}\)  può portare a un aumento della fotosintesi,  quando  l’acqua è scarsa, la fotosintesi si riduce poiché lo stress da siccità può portare alla chiusura degli stomi e persino alla clorofilla [19] . Analogamente, a temperature elevate, l’aumento della fotosintesi indotta dalla \(CO_{2}\) viene compensata da una diminuzione dell’attività enzimatica[20] [21]. In alcuni casi, la combinazione di siccità e temperatura elevata può portare a risposte fisiologiche superiori agli effetti individuali, suggerendo effetti sinergici negativi ([22] [23]
Di conseguenza, il riscaldamento attuale e futuro, insieme alla frequenza crescente di eventi estremi di calore, rappresenta una sfida significativa per l’acclimatazione e il successo fisiologico, morfologico, di crescita e riproduttivo delle piante nella biosfera terrestre [24].
Come detto prima, una maggiore disponibilità di \(CO_{2}\) deve essere compensata da altri elementi, come l’azoto. Ma pur se questo rappresenta il 78% dell’atmosfera le piante non lo possono processare direttamente, ma lo estraggono con le radici sotto forma di nitriti, nitrati e sali.
Altrimenti, le piante crescono più stente e deboli [25], rimanendo più esposte ad attacchi parassitari [26].
Tradotto in poche parole, l’aumento dell’anidride carbonica nell’atmosfera riduce l’apertura stomatica e quindi riduce la traspirazione. Di conseguenza, così aumenta la temperatura fogliare, peggiorando lo stress termico.

L’acidificazione del suolo

La maggior parte delle piante cresce bene in terreni neutri o leggermente acidi (pH 6.0-7.5), dove nutrienti come azoto, fosforo e potassio sono facilmente assorbibili. L’acidificazione del suolo è un problema che, se non corretto, porta alla desertificazione del suolo.

È vero che l’aumento della \(CO_{2}\) atmosferica stimoli in genere il processo della fotosintesi e l’assorbimento dei nutrienti da parte delle piante, alterando i cicli locali e globali degli elementi bioattivi. Sebbene i cationi nutritivi rivestano un ruolo cruciale nella produttività a lungo termine e nel bilancio del carbonio degli ecosistemi terrestri, l’impatto dell’aumento di \(CO_{2}\) sulla disponibilità di tali cationi nel suolo non è del tutto chiaro.
Ma ci sono evidenze di un nuovo meccanismo attraverso il quale l’incremento di \(CO_{2}\) favorisce il rilascio di cationi dal suolo nei sistemi agricoli a coltivazione di riso.
Concentrazioni elevate di \(CO_{2}\) hanno determinato una maggiore allocazione di carbonio organico nel sottosuolo e una escrezione netta di ioni \(H^{+}\) dalle radici, stimolando la respirazione radicale e microbica, abbassando il potenziale di ossidoriduzione del suolo e incrementando le concentrazioni di \(Fe^{2+}\) e\(Mn^{2+}\) nelle soluzioni circolanti.
L’aumento di \(H^{+}\), \(Fe^{2+}\) e \(Mn^{2+}\) promuove il rilascio di \(Ca^{2+}\) e \(Mg^{2+}\) dai siti di scambio cationico del suolo. Questi risultati suggeriscono che, nel breve periodo, livelli elevati di \(CO_{2}\)  intensificano il rilascio di cationi dal suolo, favorendo la crescita vegetale; nel lungo periodo, tuttavia, tale processo porta alla perdita di cationi e l’acidificazione del suolo, con gravi conseguenze negative sulla produttività degli ecosistemi terrestri — a pH molto bassi (sotto 5.5), l’alluminio diventa tossico e altri elementi come molibdeno scarseggiano, comprese le falde acquifere. E  anche il ricorso massiccio di fertilizzanti, usati per inseguire l’aumento della \(CO_{2}\) atmosferica, per esempio per sopperire alla riduzione dell’azoto disponibile per le piante, tendono ad acidificare il terreno.
Anche questo significa che l’aumento di \(CO_{2}\) non solo non nutre le piante, ma accelera la perdita di nutrienti essenziali dal suolo, rendendo gli ecosistemi meno resilienti.

Conclusione

La letteratura scientifica sull’argomento è sterminata, impossibile citarla tutta. Molti studi si concentrano — comprensibilmente — sulle colture destinate all’alimentazione umana, ma il quadro generale è sempre lo stesso: l’anidride carbonica si comporta come un dopante. Da un lato può stimolare la fotosintesi, dall’altro altera profondamente l’equilibrio fisiologico delle piante.
L’effetto di fertilizzazione del carbonio (CFE) globale sta già declinando dagli anni ’80 per mancanza di nutrienti e acqua [27]. Molti modelli climatici sovrastimano il salvagente vegetale – e noiperò poi paghiamo il conto.

E se questo non bastasse, l’aumento delle temperature dovuto al maggiore effetto serra accelera la traspirazione fogliare, costringendo le piante a chiudere gli stomi per non perdere acqua. A quel punto la fotosintesi rallenta o si blocca del tutto.

In passato 3, in epoche molto diverse dalla nostra, un’atmosfera ricca di CO₂ poteva favorire una crescita vegetale esplosiva. Ma allora il pianeta era privo di ghiacci, gli ecosistemi erano dominati da autotrofi primitivi e non esistevano grandi erbivori a consumare biomassa. La vegetazione cresceva, moriva e si accumulava in un ciclo continuo che oggi non è più replicabile.

Oggi, invece, quell’equilibrio non esiste più. Aumentare la CO₂ non nutre le piante: le stressa, le indebolisce e altera gli ecosistemi da cui dipendiamo. È un mito comodo per i climapiaattisti, ma resta un mito.

GJ 251c: un mondo alieno tra licheni neri e atmosfere tossiche

Notizia di queste ore è la scoperta di un nuovo pianeta che orbita attorno a una nana rossa (M4) a 18 anni luce di distanza. E giù tutti i simpatici giornaloni a dire una nuova Super Terra, quasi fosse Tahiti, magari abitata da gnomi di Babbo Natale in bermuda e mohito.
Io tutto questo entusiasmo che vedo in giro non lo capisco.
Il pianeta ha una propria rotazione assiale o è bloccato in risonanza con la sua stella? La sua massa la sappiamo, ma la densità? Da questo dipende la gravità in superficie. Al massimo (ammesso abbia una densità simile alla Terra potremo aspettarci un’atmosfera particolarmente ricca di carbonio affinché si raggiunga il punto triplo dell’acqua (273 K), perché la sua temperatura di equilibrio è a 216 K. In queste condizioni, probabilmente la forma di vita più evoluta sarà qualche lichene nero (la radiazione di corpo nero della stella influisce sui processi di fotosintesi) in un’atmosfera per noi tossica. Facciamo due conti.

A soli 18 anni luce dalla Terra, GJ 251c è una Super Terra che ha acceso l’interesse di astronomi e divulgatori. Ma dietro l’entusiasmo dei titoli di giornale, si nascondono alcune domande cruciali per stabilirne l’abitabilità: ha una rotazione propria? Qual è la sua densità? E soprattutto: può davvero ospitare vita?

Parametri orbitali e fisici

  • Massa: \( M_p \approx 4 M_\oplus \)
  • Periodo orbitale: \( P \approx 54 \, \text{giorni} \)
  • Temperatura di equilibrio: \( T_{eq} \approx 216 \, \text{K} \)

Densità e gravità superficiale

\[ \frac{R_p}{R_\oplus} = \left( \frac{M_p / M_\oplus}{\rho_p / \rho_\oplus} \right)^{1/3} \]
\[ \frac{g_p}{g_\oplus} = \frac{M_p / M_\oplus}{(R_p / R_\oplus)^2} \]

Assumendo una densità tra \(\rho_p = 4-5 \ \text{g/cm}^3\) 1 [28], si possono stimare il raggio e la gravità con \( \rho_p = 4.5 \, \text{g/cm}^3 \) e \( \rho_\oplus = 5.51 \, \text{g/cm}^3 \):

Raggio relativo rispetto alla Terra:

\[ \frac{R_p}{R_\oplus} = \left( \frac{4}{4.5 / 5.51} \right)^{1/3} = \left( \frac{4}{0.816} \right)^{1/3} \approx 1.70 \]

E la relativa gravità superficiale (sempre rispetto alla Terra):

\[ \frac{g_p}{g_\oplus} = \frac{4}{(1.70)^2} \approx 1.38 \]

Rotazione e distribuzione termica

Con un periodo orbitale di 54 giorni attorno a una nana rossa, è altamente probabile che Gliese 251c sia bloccato marealmente o in risonanza spin-orbita 2 .
Un blocco mareale stretto, come quello della Luna con la Terra per esempio, implicherebbe che un emisfero del pianeta sia perennemente illuminato, l’altro al buio. In questo caso saremmo di fronte a forti gradienti termici, mitigabili solo da un’atmosfera particolarmente densa e dinamica.
Però potrebbero esserci ancora delle zone potenzialmente sostenibili limitate al terminatore (la fascia tra il giorno e la notte).
Anche in questo caso la matematica ci dice perché:

Tempo di sincronizzazione mareale

La formula estesa è [29]:

\[
t_{\text{sync}} = \frac{\omega a^6 I Q}{3 G m_S^2 k_2 R_P^5}
\]

Dove:

  • \( \omega \): velocità angolare iniziale
  • \( a \): distanza dal corpo centrale
  • \( I = \frac{2}{5} m_p R_P^2 \): momento d’inerzia
  • \( Q \): fattore di dissipazione
  • \( G = 6.674 \times 10^{-11} \, \text{m}^3 \, \text{kg}^{-1} \, \text{s}^{-2} \)
  • \( m_s \): massa del corpo centrale
  • \( k_2 \): numero di Love
  • \( R_P \): raggio del pianeta

Per GJ 251c:

\[ I = \frac{2}{5} \cdot 2.39 \times 10^{25} \cdot (1.08 \times 10^7)^2 \approx 1.11 \times 10^{39} \]
\[ \omega = \frac{2\pi}{86400} \approx 7.27 \times 10^{-5} \]
\[ t_{\text{sync}} \approx \frac{(7.27 \times 10^{-5}) \cdot (3.29 \times 10^{10})^6 \cdot (1.11 \times 10^{39}) \cdot 100}{3 \cdot 6.674 \times 10^{-11} \cdot (7.16 \times 10^{29})^2 \cdot 0.3 \cdot (1.08 \times 10^7)^5} \]
\[ t_{\text{sync}} \approx 1.2 \times 10^7 \, \text{anni} \]

Quasi certamente il nostro pianeta è in uno stato di blocco mareale con la sua stella.

Una plausibile atmosfera

Ecco come potrebbe apparire un ambiente tipico nei pressi del terminatore di GJ 251c in una bella giornata di sole, pardon, Gliese 251.

Una plausibile composizione potrebbe essere  simile a quella terrestre dell’Eone Adeano. Quindi ipotizziamo:

  • Atmosfera:

    • Pressione: \( 3.0 \ \text{bar} \)

    • CO₂: \( 75\% \) → \( 2.25 \ \text{bar} \)

    • N₂: \( 20\% \) → \( 0.6 \ \text{bar} \)

    • CH₄: \( 4\% \) → \( 0.12 \ \text{bar} \)

    • H₂: \( 1\% \) → \( 0.03 \ \text{bar} \)

  • Temperature:

    • Emisfero diurno: \( 290-310 \ K \)

    • Terminatore: \( 273-283 \ K \)

    • Emisfero notturno: \( 200-230 \ K \)

Con una pressione sufficiente a garantire il rimescolamento atmosferico su entrambi gli emisferi di un pianeta marealmente bloccato:

\[
P_{atm} \approx 2 – 4 \, \text{bar}
\]

e una temperatura media di superficie vicina al punto triplo dell’acqua:

\[
T_{surf} = T_{eq} + \Delta T_{serra} \Rightarrow T_{surf} \approx 276 \, \text{K}
\]

Profilo di assorbimento dei pigmenti:

\[
A(\lambda) = A_0 \cdot e^{-\left( \frac{\lambda – \lambda_{peak}}{\sigma} \right)^2}
\]

\[
\lambda_{peak} \approx 1.1 \, \mu m
\]

Biosfera ipotetica: licheni infrarossi

Comparazione della radiazione di corpo nero tra Gliese 251 (in rosso) e il Sole (grigio). Lo sfondo potrebbe somigliare a quello che gli occhi umani percepirebbero in una bella giornata a mezzogiorno.

Tutto quanto  finora detto con la matematica ha una notevole importanza per lo sviluppo di possibili forme di vita su Gliese 251c. Facciamo altri due conti:

La legge di Wien che descrive la radiazione di corpo nero per  \(T\) è:

\[
\lambda_{\text{max}} = \frac{2.898 \times 10^{-3}}{T}
\]

Per \( T = 3350 \, \text{K} \), otteniamo: \(
\lambda_{\text{max}} \approx 865 \, \text{nm}
\), ma abbiamo visto che una atmosfera abbastanza dinamica da agire su entrambi gli emisferi di un pianeta bloccato spinge ancor di più verso il lontano infrarosso il picco di radiazioni: \(
\lambda_{peak} \approx 1100 \, \text{nm}\)

Questo ci suggerisce che su Gliese 251c potremmo aspettarci forme di vita anaerobica, dotate di metabolismo lento e pigmenti scuri, simili alla rodopsina terrestre [30] presente in alcuni funghi chitridiomiceti [31].
Questi organismi potrebbero sfruttare meccanismi di conversione energetica analoghi all’ATP sintasi, l’enzima che immagazzina energia luminosa sfruttando un gradiente elettrochimico nei mitocondri degli eucarioti e nella membrana cellulare dei procarioti.
Il loro habitat ideale potrebbe essere costituito da rocce porose nella zona crepuscolare, dove la luce visibile è scarsa e il vicino infrarosso (NIR) domina. Mentre sulla Terra pigmenti come la rodopsina assorbono nel NIR—una lunghezza d’onda invisibile all’occhio umano—appaiono del tutto incolori 3, in un mondo dove ogni fotone è prezioso, l’evoluzione spingerebbe gli organismi ad adattare i propri enzimi fotosensibili per massimizzare l’assorbimento dell’energia disponibile, spostata verso le lunghezze d’onda rosse e infrarosse.
Dovremmo quindi aspettarci di trovare pigmenti capaci di assorbire uno spettro molto più ampio, ce va dalla parte più alta dello spettro visibile su quel mondo fino alla luce infrarossa dominante. Questi pigmenti assorbirebbero tutta la luce visibile (per quanto scarsa) e quella infrarossa, apparendo neri ai nostri occhi.
Il ciclo biochimico che dovremmo quindi aspettarci di trovare è pressapoco questo:
\[ 4H_2 + CO_2 \rightarrow CH_4 + 2H_2O + \text{energia} \]

Conclusione

Gliese 251c non è una seconda Terra. È un mondo alieno, forse abitabile per quelle forme di vita che metabolizzano nell’infrarosso e respirano metano. Considerando che Gliese 251 ha un’età di 6.8 miliardi di anni – è più vecchia del Sole – il pianeta ha avuto abbondante tempo non solo per sincronizzarsi con la sua stella, ma anche per sviluppare una biosfera matura e stabilizzare la sua atmosfera
Forse, sul pianeta potrebbero coesistere anche sacche di vita con biochimiche molto diverse tra loro la cui unica cosa in comune è la fioca luce della loro stella.
E proprio per questo, è ancora più affascinante.