Come il V2H può cambiare l’Italia (parte prima)

L’autonomia energetica non è solo un sogno. È una scelta tecnica, culturale e personale. Da un paio di anni vivo in una casa alimentata da un impianto fotovoltaico da 8 kWp, con 15 kWh di accumulo e una gestione intelligente orchestrata da intelligenza artificiale. Risultato? La mia ultima bolletta bimestrale è di 48 €, di cui 16 € sono il canone TV. Il resto è energia. E anche quella, è tutta mia.

Ho dovuto, malvolentieri, suddividere l’articolo i due tronconi: ci sono troppe cose da dire rispetto al tempo di attenzione di un lettore medio. Questa m’è parsa la soluzione migliore per tutti, e ne varrà la pena aspettare qualche giorno affinché l’importanza di un veicolo elettrico V2G e del fotovoltaico casalingo con accumulo venga compresa al meglio dal lettore.
Nel prossimo, le considerazioni finali.

L’auto come batteria: il concetto di V2H/V2G

Con l’arrivo della mobilità elettrica, le auto non sono più solo mezzi di trasporto. Sono accumulatori mobili da 60–100 kWh, parcheggiati per il 90% del tempo. Il V2H (Vehicle-to-Home) permette di scaricare energia dalla batteria dell’auto per alimentare la casa. Il V2G (Vehicle-to-Grid) consente di immettere energia nella rete nazionale, contribuendo alla stabilità e ricevendo compensi.

 

Simulazione: un milione di auto elettriche V2G

ParametroValore stimatoNote / fonte
Numero di auto V2G1.000.000
Plausibile al 2028-2030 (oggi ~334k EV totali, proiezione PNIEC: 6,5M al 2030).
Percentuale attiva contemporanea50% → 500.000 autoBasato su soste medie (notte/lavoro), ~50% connesse in orari di picco.
Capacità media batteria60 kWh (conservativa)Media attuale 53 kWh; sale con nuovi modelli.
Energia disponibile per V2G50% della batteria → 30 kWh/autoLimite per non intaccare mobilità; ciclo round-trip 80%.
Totale energia disponibile500.000 × 24 kWh = 12 GWhUtile per ~1-2 ore di scarica di picco.
Potenza media erogabile/auto3 - 7 kW (scarica controllata, non massima)Conservativo; fino a 7 kW domestico, 22 kW aziendale.
Potenza istantanea totale1.5 - 3,5 GWDipende da aggregazione; es. 500k × 3-7 kW.
Impatto sulla rete nazionale
12 GWh di energia immediata disponibile → sufficiente a coprire:
Il fabbisogno giornaliero di 2 milioni di abitazioni (media 6 kWh/giorno/abitazione)
1.5 - 3.5 GW di potenza istantanea → pari a
circa una grande centrale nucleare.
O il 10–15% del picco serale medio italiano in inverno

 

La rete italiana (gestita da Terna) ha un picco di domanda attuale di circa 56 GW (luglio 2025), con consumi medi giornalieri di circa 800 GWh. Un parco V2G come immaginato nella simulazione agirebbe come una batteria distribuita mobile: essa assorbe senza sforzo gli eccessi rinnovabili (ex. il solare diurno) e rilascia in picchi serali, stabilizzando la rete senza bisogno di storage stazionario costoso. Ecco l’impatto stimato, in termini percentuali e benefici:

  1. Su Picchi di Domanda (Peak Shaving)
    • Riduzione potenziale: 1.5-3.5 GW, ovvero il 2.7-6.2% del picco nazionale (56 GW).
    • Esempio locale: A Roma, stime Areti indicano circa 400 MW solo con lo smart charging più il V2G iniziale; su scala nazionale si potrebbe arrivare a 2-4 GW con un milione di auto.
    • Beneficio: Eviterebbe blackout o investimenti di rete per un risparmio di circa 1-2 miliardi di euro fino al 2030.
  2. Su Energia Totale e Integrazione Rinnovabili
    • 12 GWh netti equivalgono a circa l’1.5% del consumo giornaliero, stimati oggi 800 GWh, ma concentrati tutti in 2-4 ore di picco; questo scenario dimezzerebbe i vuoti serali, integrando il surplus del 10-15% di solare/eolico (oggi al 42% della domanda energetica).
    • Al 2030, con 6.5 milioni di veicoli elettrici V2G (stimati) si otterrebbe un potenziale accumulo totale pari a 300 GWh (pari alla produzione giornaliera di 12 centrali nucleari da 1000 MW), riducendo le emissioni CO2 di 200-300 mila tonnellate all’anno (valore economico 0.8-4.8 €/kWh evitato).
  3. Benefici Economici e Ambientali
    • Economici: Almeno 700-800 milioni di euro all’anno per il sistema (riduzione costi dispacciamento del 40%); mentre gli utenti guadagnerebbero intorno ai 100 €/auto/anno vendendo il surplus di energia.
    • Ambientali: Maggiore quota di rinnovabili significa meno emissioni (la doppia vita delle batterie ridurrebbe il bisogno di litio); il degrado extra batteria <1% in 10 anni con gestione smart.
    • Rischi: Congestioni locali se non aggregati bene, ma mitigabili con le Unità Virtuali Abilitate Miste (UVAM) da 1 MW [1]

Sala tecnica operativa di Terna (RM)

Secondo Motus-E e ARERA [2] il V2G potrebbe diventare una delle leve principali per la transizione energetica italiana, con incentivi fino a 600 €/anno per utente e un significativo – come abbiamo visto — impatto strutturale sulla bilancia energetica nazionale.
In pratica, se anche solo metà delle auto elettriche italiane diventassero V2G-ready, potremmo trasformare il parco circolante in un gigantesco UPS nazionale, capace di assorbire e restituire energia in modo intelligente.

Un esempio molto simile è il californiano V2G Curbside [3] dell’aprile 2025. Il California Energy Commission ha finanziato un progetto da 1.1 milioni di dollari per sviluppare il primo sistema V2G curbside al mondo 1. È stato pensato in collaborazione con UC Berkeley e University of Delaware per creare colonnine bidirezionali installabili sui marciapiedi urbani, dove milioni di auto sono parcheggiate ogni giorno, con l’obiettivo di trasformare le auto elettriche in sosta in risorse energetiche attive, capaci di scaricare energia nella rete durante i picchi e ridurre la pressione sulle infrastrutture elettriche.
Solo in California, si parla di 7 milioni di veicoli leggeri parcheggiati quotidianamente. Se anche solo il 10% di questi fosse V2G-ready, si otterrebbero 21 GWh di energia disponibile in caso di necessità. Il progetto include lo sviluppo del J3068 Active Cable [4], un cavo intelligente che gestisce comunicazione, autenticazione e flussi bidirezionali.

24 Giugno 2025, California. Un Modello Perfetto

il 24 giugno 2025, la California ha vissuto un momento storico. Durante una fascia critica tra le 19:00 e le 21:00, la rete elettrica era sull’orlo del blackout a causa di un picco di richiesta e una produzione rinnovabile in calo (picco +15-20% rispetto alla richiesta prevista). Ed è lì che è entrata in gioco la Virtual Power Plant (VPP) di Tesla e Sunrun: una rete di 25.000 Powerwall domestici aggregati e gestiti in tempo reale.
Sunrun ha dispacciato oltre 340 MW prelevate dalle batterie domestiche in serata, mentre Tesla ha testato un evento con migliaia di Powerwall, iniettando potenza extra durante le ore critiche e evitando blackout diffusi. Si è trattato di un salvataggio da 100 MWh in un colpo solo, simile a una centrale termoelettrica di medie dimensioni ma distribuito e scalabile. E il sistema ha risposto in modo sincrono, stabile e distribuito, evitando il collasso della rete. Il modello  californiano, con la sua straordinaria capacità di adattamento — domanda di picco intorno ai 50 GW, ha tagliato i costi emergenziali per centinaia di milioni di dollari e integrato un 15% di surplus di energia rinnovabile senza ricorrere a nuovi impianti centrali.

In Italia, con i nostri picchi estivi (tipo +7% consumi a giugno 2025), un setup VPP da un milione di auto e accumuli casalinghi potrebbe replicarlo alla scala nazionale, coprendo 1-3 GW extra senza muovere nemmeno un mattone.
L’esperienza californiana dimostra che l’energia decentralizzata è affidabile e che l’applicazione concreta dell’intelligenza artificiale nella gestione della rete elettrica distribuita è in grado di coordinare migliaia di dispositivi privati senza sforzo. E questo è un modello perfettamente replicabile in Italia grazie all’integrazione del modello casa-auto elettrica tramite il V2H/V2G.

28 aprile 2025. Caos nella Penisola Iberica

Il blackout del 28 aprile 2025 in Spagna e Portogallo è stato un campanello d’allarme per tutta l’Europa [5]. In pochi secondi, 15 GW di potenza sono spariti dalla rete iberica, causando oltre 10 ore di interruzione in molte zone e gravi disagi nei trasporti, telecomunicazioni e servizi essenziali. E tutto questo, paradossalmente, in un momento di alta produzione rinnovabile.
Non è stata la sovrapproduzione delle fonti rinnovabili, come qualche incauto il giorno dopo azzardò a proporre, ma una rete non sufficientemente flessibile per gestire sbilanciamenti improvvisi. Più precisamente fu proprio l’assenza di sistemi di bilanciamento del carico elettrico nazionale come sistemi di accumulo distribuito configurati in una VPP attiva a far crollare il sistema o, almeno, questa soluzione avrebbe ridotto di almeno un 40/50% le probabilità di un blackout estremo come quello che si è verificato dando il tempo necessario ai gestori di riallineare gli impianti tradizionali.

28 settembre 2003: Blackout italiano

L’Italia vista dallo spazio la notte del blackout nazionale del 2003

Dopo il blackout del 28 settembre 2003 [6], l’Italia ha invece investito pesantemente in reti intelligenti (le smart grid) con sistemi di protezione e riaccensione automatica, e interconnessioni europee più robuste coi paesi europei più vicini (Francia, Svizzera, Slovenia). Anche i sistemi di accumulo stazionario e fotovoltaico residenziale sono in crescita costante.
L’adozione della normativa CEI 0-21 che ora include anche il V2G [7] consentirà alla rete elettrica nazionale italiana di essere ancor più resiliente di quanto sia oggi.

Ora, immaginiamo di adattare l’ipotesi di cui sopra di un parco di un milione di auto elettriche V2G, esteso magari anche alle batterie domestiche per chi ha il fotovoltaico: con ARERA che promuove le Unità Virtuali Miste (UVAM [8]) regolamentate dal Testo  Integrato del Dispaccciamento Elettrico (TIDE [9]) dal 2025, è fattibile: aggregatori come Enel X o nuovi player potrebbero coordinare via app, pagando 0.10-0.20 €/kWh per scarica.
Ecco l’impatto stimato da questo scenario:

  1. Sul picco italiano del 28 giugno scorso  (eccesso di rchiesta di energia intorno a 1-2 GW):
    • La VPP coprirebbe il 75-175% dell’extra domanda: 1.5-3.5 GW iniettati nelle 2-4 ore serali di picco dimezzerebbero il calo del fotovoltaico, evitando così onerose importazioni lampo da Francia e Austria (+20% nei prezzi spot).
    • Beneficio: Risparmio rete di circa 100-200 milioni di euro a evento senza emissioni di gas extra,  grazie al surplus  fotovoltaico (Italia al 10% quota, sale al 25% con VPP).
  2. Rispettto al blackout spagnolo (un distacco generale causato dalla perdita di 30-36 GW):
    • Scala nazionale: La rete italiana (picco 56 GW) è simile; una VPP da un milione di auto V2G mitigherebbe  del 5-6% un guasto simile (appoggiandosi comunque anche alla rete europea). Con espansione a 2-3 milioni di auto V2G al 2027,  si raggiungerebbero i 4-7 GW. Abbastanza per tamponare un 10-20% di caduta, dando tempo a Terna per reindirizzare il sistema.
    • Scenario ottimista: In picco di domanda dovuta a un’ondata di caldo anomalo imprevisto,tipo il caso californiano, o un guasto alla rete , nel caso spagnolo, una VPP e le smart grid ridurrebbero i rischi di blackout totale del 40-50%, come in CA.
    • Economicamente: Gli utenti guadagnerebbero per il loro surplus 100-200 €/auto/anno; il sistema nazionale risparmierebbe intorno ai 500-1 miliardo di euro all’anno in investimenti di stoccaggio.

 

Ricerca di base per l’ambiente

C’è chi ancora pensa che gli scienziati del CERN (Consiglio Europeo per la Ricerca Nucleare) siano delle specie di talpe che vivono sottoterra a giocare con il destino del mondo con i loro acceleratori di particelle, che progettino di costruire buchi neri che inghiottano la Terra, che facciano ricerche blasfeme sulla Particella di Dio (il bosone di Higgs). Più semplicemente – e generalmente – c’è chi vede nella Scienza tutto il male possibile dell’uomo e  della sua natura autodistruttiva. Non è così, e vorrei un attimino spiegare il perché di quella Scienza con la lettera maiuscola: essa è figlia dell’intelletto e del ragionamento umano, al contrario della pseudo-scienza frutto dell’ignoranza e della superstizione che oggi è purtroppo tanto di moda.


Una striscia di Getter

Il CERN non è solo ricerca sui protoni, quark e affini: chi pensa che la ricerca di base sia una spesa inutile (come spesso la vedono gli ottusi responsabili dei bilanci statali e coloro che sono preposti a difendere l’istituto dell’istruzione fondamentale nel nostro paese) sbaglia: pensate se Tim Berners-Lee e Robert Cailliau nel 1989 avessero tenuto per sé le loro intuizioni e brevettato il World Wide Web: ora sarebbero arci-mega-pluri-fantastiliardari e vivrebbero in un deposito a Paperopoli, solo per fare uno dei più eclatanti esempi di invenzioni e scoperte che il CERN ha fatto dall’anno della sua fondazione.

Adesso una tecnologia che è fondamentale per lo studio delle particelle sta per rivelarsi importantissima nel campo delle energie alternative del solare termico, facendo fare a quest’ultima (spesso a torto considerata “il solare dei poveri”) un balzo enorme nella cattura dell’energia solare.
Una società di ingegneria civile ha recentemente iniziato ad utilizzare pannelli solari termici basati sulla tecnologia ultra alto vuoto sviluppato al CERN. In questi pannelli  le perdite di calore sono  state ridotte al minimo, consentendo ai fluidi vettori di raggiungere diverse centinaia di gradi anche in un ambiente con ridotta irradiazione solare, come ad esempio lo è il Nord Europa. A Ginevra infatti, lo scorso 15 giugno, la società di ingegneria civile Colas ha aperto un nuovo impianto di energia solare basato sulla tecnologia del vuoto del CERN. Si tratta di  un totale di 80 metri quadrati e funziona riscaldando circa 80.000 metri cubi di bitume a 180 gradi.

Questo è stato reso possibile attraverso l’uso della tecnologia dell’ultra alto vuoto  che viene usata al CERN all’interno degli acceleratori di particelle inventata dal fisico italiano Cristoforo Benvenuti, che ha sostituito il tradizionale nastro Getter con un film sottile di materiale Getter realizzato con speciali leghe metalliche messe a punto nei laboratori del Cern e  deposto su tutta la superficie interna delle camere da vuoto, tecnologia sviluppata prima per il LEP e poi adottata anche per l’LHC.

IL VUOTO DELL’LHC

Per realizzare il vuoto negli acceleratori di particelle, l’aria viene dapprima evacuata mediante normali pompe meccaniche. L’anello viene poi successivamente scaldato a 150 gradi per eliminare il vapore acqueo ancora presente sulle superfici interne. A questo punto restano da eliminare le molecole di gas (soprattutto idrogeno) che ancora  permeano le pareti. Durante il funzionamento dell’ acceleratore infatti, le pareti interne subiscono il violento bombardamento della luce di sincrotone, la quale produce un’ ulteriore emissione di gas che deve essere eliminato. Entra qui in gioco il nastro Getter  il quale cattura le molecole vaganti fissandole sotto forma di composti chimici stabili come ossidi, nitruri e carburi.

Cristoforo Benvenuti con la sua invenzione

La ridotta dispersione di calore  è ciò che rende questi pannelli solari  innovativi: per poter aumentare la temperatura d’esercizio è necessario ridurre al minimo la perdita di calore e il vuoto appunto è il miglior isolante termico che la natura stessa può offrire.  La luce diffusa o indiretta – che può rappresentare anche più del 50% del totale dell’energia solare disponibile nei paesi del Centro e Nord Europa, viene recuperata utilizzando un dispositivo riflettente costituito da due specchi cilindrici (vedi foto) e permette all’impianto di  creare vapore anche  in assenza di luce solare diretta.
Questa nuova tecnologia di costruzione dei pannelli solari potrebbe rivelarsi  interessante per le industrie che l’adotteranno, consentendo dei notevoli progressi nel contenimento delle emissioni di CO2 nell’atmosfera. In ogni caso, ci sono già i piani per estenderla a tutti gli impianti Colas in Svizzera. Tuttavia, è di minore interesse per l’uso abitativo civile: infatti questi pannelli solari producono acqua calda, ma a temperature molto elevate, fino a 300 gradi, quindi  per un semplice uso domestico è necessario che l’intero sistema venga semplificato e reso meno costoso.