Principio di autorità e Riscaldamento Globale Antropogenico

Il principio di autorità descrive la propensione ad accettare —o imporre — un’affermazione come vera basandosi sulla reputazione, sul ruolo o sulla notorietà di chi la formula, anziché sulla solidità intrinseca delle prove che la supportano.
Si tratta di una scorciatoia cognitiva che molto spesso può condurre a fallacie logiche, specialmente in ambito scientifico, dove è fondamentale valutare criticamente fonti e argomentazioni.
Un po’ come dire ” …me lo ha detto mio cugino!” e quindi deve essere vero per forza, o “Lo dico io che sono il Megadirettore Galattico Duca Conte etc. e voi altri non avete titoli per smentire le mie affermazioni
Ma nel mondo reale non funziona così. In contesti scientifici, così come in filosofia e nel diritto, l’autorevolezza deve sempre essere sottoposta a un esame empirico o razionale, al fine di evitare gravi e talvolta grotteschi errori.

Il Cambiamento Climatico non ha niente a che vedere con le variazioni dell’orbita terrestre

Questo grafico mostra chiaramente due linee che vanno in direzioni opposte: l’irradianza solare totale (TSI, linea gialla): oscillazioni cicliche di ~11 anni (ciclo solare), ma con tendenza a lungo termine in calo (da ~1362 W/m² medi intorno agli anni ’80 a ~1360-1361 negli ultimi decenni) Dati SATIRE-T2 * e temperatura globale (linea rossa, GISTEMP 3.1 **): salita costante e accelerata, da ~0.2°C anomalia negli anni ’80 a +1.0°C+ oggi (rispetto al riferimento base 1951-1980, la tendenza è inequivocabile).

Nel mio recente articolo La CO₂ non è cibo per le piante: chimica reale contro bufale climatiche [1] ho smontato unna congettura fatalista tanto cara a coloro che, dopo aver negato per anni ogni evidenza che dimostrava l’aumento antropogenico della \(CO_{2}\), cercavano di farla digerire affermando che la \(CO_{2}\) è cibo per le piante.
Un’altra congettura cara ai climapiattisti più puri e negazionisti è quella di attribuire il Riscaldamento Climatico Antropogenico a non meglio precisate variazioni dell’orbita terrestre (ora colpa di Giove, ora di Venere, ora di entrambi) come nella miglior tradizione ‘strologica 1 fino a scomodare i  Cicli di Milankovitch (fa sempre ganzo usare termini e fenomeni che realmente non si comprendono giusto per darsi una certa importanza).

Non avendo altre argomentazioni a supporto delle loro congetture, nelle loro comparsate nelle trasmissioni-pollaio 2 in televisione questi vecchi arnesi iniziano la loro solita sequela di anatemi snocciolando titoli accademici e incarichi ricoperti con la presunzione di essere gli unici a poter parlare di Riscaldamento Globale verso chiunque gli si opponga, siano essi scienziati o attivisti informati.

L’orbita terrestre

Partiamo dai dati veri: Senza risalire oltre, diciamo dall’eone Proterozoico (2,5 miliardi di anni fa), l’orbita terrestre  sempre rimasta stabile a una distanza media di 149,6 milioni di chilometri [2].
Questo accade perché la massa della Terra (o meglio, del sistema Terra-Luna) è relativamente grande rispetto agli altri corpi minori e non subisce perturbazioni estreme da parte dei giganti gassosi del Sistema Solare, checché ne dicano gli ‘strologi.
Insomma, vista dalla Terra, la struttura complessiva del Sistema Solare è dinamicamente tranquilla e — per nostra fortuna — piuttosto noiosa.
Gli unici eventi che potrebbero alterare drasticamente l’orbita terrestre sono:

  • incontri ravvicinati con pianeti massicci,
  • passaggi di stelle vicine,
  • instabilità dinamiche del Sistema Solare.

Le ricostruzioni geologiche e astronomiche, però, non mostrano tracce di sconvolgimenti orbitali nel periodo fin qui considerato.

Geometria astronomica for dummies

1) Energia orbitale e semiasse maggiore

Per un’orbita kepleriana attorno a una stella, il semiasse maggiore \(a\) è legato all’energia specifica orbitale \(\epsilon\):

\[ \epsilon = – \tfrac{\mu}{2a} \]

dove

  • \(\mu = GM_{\odot}\) è il parametro gravitazionale 3
  • \(a\) è il semiasse maggiore
  • \(\epsilon\) è l’energia per unità di massa

Se non sono presenti altre forze dissipative, ma solo gravità newtoniana, \(\epsilon\; \text{e}\; a\) sono costanti. Le altre perturbazioni planetarie alterano l’eccentricità, l’inclinazione, gli argomenti angolari, ma il semiasse maggiore resta praticamente invariato al primo ordine.

2) Perché le variazioni sono minime: le equazioni di Lagrange per \(a\)

In teoria, il semiasse maggiore può variare per effetto di un potenziale perturbativo \(R\)
(dovuto agli altri pianeti, ecc.). Le equazioni planetarie di Lagrange danno:

\[ \tfrac{da}{dt}=\tfrac{2}{na} \tfrac{\partial R}{\partial M} \]

dove

  • \(n =\sqrt{\tfrac{\mu}{a^3}}\) è il moto medio
  • \(M\) è l’anomalia media
  • \(R\) è il potenziale perturbativo medio

Facendo la media su molte orbite (per esempio con approssimazione secolare, il termine \(\tfrac{\partial R}{\partial M}\)  tende a zero:

\[ \left\langle \tfrac{da}{dt} \right\rangle \approx 0 \]]

ovvero il semiasse maggiore può oscillare, ma non deriva mai sistematicamente [3].

3) Effetto della perdita di massa solare

E qui la cosa si fa parecchio interessante. Tutte le stelle durante tutto il loro ciclo vitale perdono una piccola frazione della propria massa sotto forma di vento stellare e radiazione; anche il Sole non fa eccezione
Se la massa del Sole diminuisce nel tempo (\(M_{\odot} \)) diminuisce lentamente nel tempo, il parametro gravitazionale \(\mu =\;GM_{\odot}\) si riduce e le orbite dei pianeti si espandono.
Per un lento calo della massa centrale, al primo ordine vale la relazione (problema kepleriano a due corpi):

\[\tfrac{\overset{.}a}{a} \approx – \tfrac{\overset{.}M_{\odot}}{M{\odot}}\]
dove \(a\) è il semiasse maggiore dell’orbita terrestre.
Assumendo  \(\tfrac{\overset{.}M_{\odot}}{M{\odot}}\) circa costante su tempi geologici, si integra ottenendo:

\[ a(t) \approx a_{0}  \tfrac{M_{\odot} \;(0)}{M_{\odot} \;(t)}  \]
Osservazioni e modelli suggeriscono per il Sole un tasso relativo di perdita di massa dell’ordine di:

\[ \tfrac{\overset{.}M_{\odot}}{M{\odot}} \approx 9 \times 10^{-14}\;yr^{-1} \]
somma di vento solare e conversione massa–energia. Prendiamo così il nostro intervallo di tempo dal Proterozoico:
\[t=2.5 \times 10^{9}\;\text {anni} \]

Con \(a_{0} \simeq 1,496\times 10^{8}\;km \), la variazione al primo ordine del semiasse maggiore è:

\[ \Delta a \simeq a_{0}\left| \tfrac{\overset{.}M_{\odot}}{M{\odot}} \right|t\]
sostituendo i valori:
\[ \Delta a \simeq 1,496 \times 10^{8}\;km \times 8,95 \times 10^{-14}\;yr^{-1}\times 2,5 \times 10^{9}\;yr  \]
Pertanto:
\[ \Delta a \approx1,496 \times 10^{8}\;km \times 2,2375 \times 10^{-4} \approx 3,35 \times 10^{4}\;km \]

In altri termini, dal Proterozoico (2.5 miliardi di anni fa) il semiasse maggiore dell’orbita terrestre è aumentato di 33500 chilometri su una distanza di 149,6 milioni di chilometri.
\[ \tfrac{\Delta a}{t} \approx \tfrac{3,35\times 10^{4}\;\text{km}}{2,5\times^{9}\;\text{anni}}\sim 1,34 \;\text{cm/anno} \]
Un’inezia, se oggi, con un’eccentricità dell’orbita di 0,0167 (quasi circolare) la differenza tra afelio e perielio è di \(4.999.627\; km \approx 5 \times 10^{6}\;km\).

Ma mica è finita qui.

4) La formula di Gough  [4]

Il Sole, proprio come tutte le altre stelle di tipo G nel Ramo Principale, aumenta lentamente la propria luminosità mentre:

  • converte idrogeno in elio nel nucleo
  • il nucleo si contrae
  • la temperatura centrale aumenta
  • la potenza irradiata cresce

I modelli di evoluzione solare mostrano una crescita quasi lineare su scale di centinaia di milioni di anni.

\[ \tfrac{L(t)}{L_{0}} \approx 1-\tfrac{2}{5}\left( 1-\tfrac{t}{t_{0}} \right) \]
ovvero un aumento di luminosità di circa il 30% da quando è nato il Sole. Un tasso medio ≈ 0,7% ogni 100 milioni di anni. Ai fini pratici, un aumento di luminosità di questa portata comporta un aumento della costante solare di \(9-10\;W/m^{2}\), ossia \(\sim 1^{\circ}C \) ogni 100 milioni di anni.  Anche qui, neanche il 2% rispetto al Proterozoico.

Concludendo questa prima carrellata tra geometria astronomica e astrofisica cari pseudoesperti climapiattisti non sono le orbite o la luminosità solare i responsabili del Riscaldamento Globale.
Ma so di certo che tirereste la scusa: Ma allora i Cicli di Milankovitch?

I Cicli di Milankovitch

I cicli di Milankovitch descrivono i cambiamenti a lungo termine nella traiettoria terrestre, proposta negli anni ’20 dal geofisico e astronomo Milutin Milankovitch. Egli analizzò le variazioni dell’eccentricità terrestre, dell’inclinazione dell’asse e della precessione orbitale avvenute negli ultimi milioni di anni, individuando la correlazione tra tali parametri e i modelli climatici del pianeta, in particolare i cicli glaciali.
Attualmente, la  precessione assiale della Terra completa un intero ciclo di precessione all’incirca in ~ 26.000 anni.
Ma in un lontano passato non era così. La canonica interpretazione dei ciclo di Milankovitch non va oltre i 50 milioni di anni.

1) La precessione assiale

Regolari alternanze di strati bianchi, marrone-rossastri e grigio-blu, su una scala di circa 10 cm, sono interpretate dai ricercatori come tracce del ciclo di precessione dell’asse terrestre, visibile in primo piano a sinistra nell’immagine. Circa 2,46 miliardi di anni fa, tale ciclo aveva un periodo sensibilmente più breve – intorno agli 11.000 anni – rispetto agli attuali circa 21.000 anni, a causa della minore distanza tra Terra e Luna. La determinazione precisa del periodo dei cicli su piccola scala, e quindi della distanza Terra-Luna, può essere ottenuta confrontando il rapporto di spessore con i cicli su scala maggiore di 100.000 anni, osservabili sullo sfondo.
Credit: Frits Hilgen

Anche questa volta la geologia e la matematica ci sono di aiuto per ricostruire la storia — e la climatica — della Terra. Oggi la durata del giorno è di ~24 ore e la frequenza precessionale (precessione lunisolare o assiale) è ≈ 50,3″ per anno.
\[ \tfrac{360\;^{\circ}}{ 50,3^{\prime\prime}/anno} = \;\approx 25786 \; anni\]
Ma nel Proterozoico [5] non era così. il giorno durava 17 ore e la Luna era ad appena ≈ 216-220 mila chilometri di distanza. E siccome la frequenza di precessione \(\psi\) è direttamente proporzionale al reciproco della velocità angolare di rotazione terrestre \(\omega\):
\[ \psi \propto \tfrac{1}{\omega} \]
Non è quindi difficile dimostrare che nel Proterozoico il ciclo precessionale era molto più breve di oggi del 41%.

2) La precessione del perielio

Parallelamente, la rotazione ellittica dell’orbita influisce sull’alternanza delle stagioni e sulle variazioni orbitali con un periodo lento di ~ 112 mila anni. Questa si chiama precessione del perielio (o della linea degli apsidi).
Anch’essa non è costante nel tempo. È cambiata in modo significativo, ma per ragioni completamente diverse rispetto alla precessione degli equinozi.
La precessione del perielio è un movimento della stessa orbita ellittica terrestre. È causata principalmente dalle attrazioni gravitazionali degli altri pianeti, specialmente Giove e Saturno. La sua durata dipende quindi dalla configurazione del Sistema Solare.
Secondo il modello più accreditato, noto come Modello di Nizza e le sue successive evoluzioni [6], i pianeti giganti del Sistema Solare (Giove, Saturno, Urano e Nettuno) non si sono originati nelle attuali posizioni orbitali. Le interazioni gravitazionali con il disco residuo di gas e planetesimi, avvenute nel corso di lunghi periodi, hanno determinato la migrazione delle loro orbite. Questo processo graduale ha modificato in modo costante le influenze gravitazionali esercitate da ciascun pianeta sull’orbita terrestre, causando variazioni nel periodo della precessione del perielio.
Il Sistema Solare si configura come un sistema dinamico intrinsecamente caotico su scale temporali dell’ordine di milioni di anni. In tale contesto, le orbite planetarie non possono essere previste con precisione indefinita: piccole perturbazioni tendono ad amplificarsi, generando variazioni non lineari nei parametri orbitali, compreso il ciclo della precessione del perielio.
Nel recente passato geologico, ossia negli ultimi pochi milioni di anni, la durata di questo ciclo ha variato tra circa 100.000 e 130.000 anni, attestandosi intorno ai ~ 112.000 anni durante il Quaternario, con un impatto significativo sull’insorgenza delle ere glaciali.
Risalendo a centinaia di milioni di anni fa, nel Proterozoico, la configurazione orbitale della Terra era quasi certamente differente, determinando una durata diversa del ciclo. La stima esatta di tale valore è estremamente complessa, ma i modelli dinamici confermano che non si trattava di un parametro costante.
È fondamentale distinguere che questo ciclo è del tutto indipendente dalla presenza o dalla distanza della Luna. Quest’ultima influisce fortemente sulla precessione degli equinozi e sulle maree, ma esercita un’influenza trascurabile sull’orbita ellittica terrestre attorno al Sole, governata principalmente dall’interazione con gli altri pianeti.

3) La precessione climatica

Quest’altro ciclo di Milankovitch è invece la combinazione dei due illustrati qui sopra. È quindi abbastanza evidente che anche questo, attualmente lungo ~ 21 mila anni, è in realtà piuttosto variabile:
\[ \tfrac{1}{P_{clim}}= \tfrac{1}{P_{assiale}} + \tfrac{1}{P_{orbitale}} \]
In altre parole L’asse terrestre ruota (ciclo lento) e contemporaneamente l’intera ellisse orbitale ruota (ciclo ancora più lento). La posizione relativa tra la direzione dell’asse (che definisce le stagioni) e la direzione del perielio (il punto dell’orbita più vicino al Sole) cambia con una velocità che è la somma delle due velocità di rotazione. Ecco perché il periodo risultante è più corto di entrambi.

4) L’eccentricità dell’orbita

I cicli di Milanković NON sono “fissi”: derivano da frequenze secolari dei pianeti, chiamate:

g, g, g, g, g (precessione dei perieli)
s, s, s, s₄, s (precessione dei nodi)

Le frequenze gₙ (precessione dei perieli)

PianetaSimbologₙ (arcsec/anno)Ruolo
Mercuriog₁+5.59irrilevante per la Terra
Venereg₂+7.45fondamentale per il ciclo di 405 mila anni
Terrag₃+17.35precessione orbitale terrestre
Marteg₄+17.92modula i cicli da 100 mila e 2.4 milioni di anni
Gioveg₅+4.25modula il ciclo di 405 mila anni

Le frequenze sₙ (precessione dei nodi)

PianetaSimbolosₙ (arcsec/anno)Ruolo
Mercurios₁–5.59marginale
Veneres₂–7.06influenza obliquità
Terras₃–18.85ciclo obliquità di 41 mila anni
Martes₄–17.75modula obliquità e cicli lunghi
Gioves₅–6.57contributo minore

Questa spesso è una parte che pochi si soffermano a spiegare.

  • Il Ciclo “Ancorato” di 405.000 anni
    Questo ciclo ultra-lungo è principalmente una risonanza orbitale tra la precessione del perielio di Venere e quella della Terra. In parole povere, i punti dell’orbita più vicini al Sole (perielio) di questi due pianeti si “inseguono” nello spazio con un ritmo fisso e stabile, completando un ciclo completo ogni 405.000 anni.
    Giove, con la sua enorme massa, è il grande regolatore che rende possibile questa risonanza. La sua gravità domina la precessione del perielio di tutti i pianeti interni (Mercurio, Venere, Terra, Marte).
    \[ P= \tfrac{1}{\mid g_{_{2}}\;-\;g_{_{5}}\;\mid} \]
    Senza l’influenza stabilizzante di Giove, le orbite dei pianeti interni mostrerebbero un comportamento molto più caotico. Quindi, è più preciso dire: il ciclo di 405.000 anni è una risonanza tra Venere e Terra mediata dalla gravità di Giove.
    Stabilità: Questo è il ciclo di Milankovitch più stabile nel tempo. I calcoli e le evidenze geologiche suggeriscono che sia rimasto costante per almeno 250 milioni di anni e probabilmente per gran parte dell’era Fanerozoica. Per questo è chiamato il “pendolo geologico” o “cronometro” per calibrare la scala dei tempi geologici profondi.
  • I Cicli di ~100.000 e ~400.000 anni (Eccentricità)
    Questi cicli derivano dalla modulazione dell’eccentricità dell’orbita terrestre. Non sono semplici risonanze a due corpi, ma emergono dalla combinazione di cicli più brevi legati alle interazioni tra più pianeti.
    L’eccentricità \(e\) della Terra varia perché la sua orbita è continuamente perturbata dalle attrazioni degli altri pianeti. Matematicamente, la variazione di \(e\) può essere scomposta in una somma di molte componenti sinusoidali con periodi diversi.
    Un ciclo di ~100.000 anni: Questo è il risultato della combinazione di altri due cicli principali: uno
    legato alle interazioni Terra-Giove-Saturno, con un periodo di circa 95.000 anni e l’altro legato alle interazioni Terra-Marte, con un periodo di circa 99.000 anni (a volte citato come 120.000 anni, a seconda del modello) [7].
    La sovrapposizione (interferenza) di questi due segnali produce il picco di potenza dominante che osserviamo nei dati climatici degli ultimi milioni di anni intorno ai 100.000 anni.
    Ciclo di ~400.000 anni: Questo è un armonico del ciclo di 405.000 anni (\(\sim 405/1 = 405 \;\text{e}\; 405/4 ≈ 101\)), ma anche il risultato di altre interazioni a lungo termine nel sistema solare.

Questo contesto illustra il motivo per cui il ciclo glaciale di circa 100.000 anni, caratteristico degli ultimi 800.000 anni, rimane uno dei fenomeni più enigmatici e dibattuti della paleoclimatologia. Il forcing astronomico legato all’eccentricità, su questa scala temporale, risulta infatti estremamente debole, producendo solo lievi variazioni di insolazione. Perché questo segnale minimo diventi il ciclo glaciale predominante, il sistema climatico terrestre – comprendente calotte di ghiaccio, oceani e concentrazioni atmosferiche di \(CO_{2}\) – deve rispondere in modo non lineare e con meccanismi di amplificazione significativi.
In epoche geologiche più remote, quando la disposizione dei continenti o i livelli di \(CO_{2}\) differivano sensibilmente, altri cicli astronomici, come quello di 41.000 anni legato alle variazioni dell’obliquità, esercitavano un’influenza dominante sulle oscillazioni climatiche globali.

Cicli di Milankovitch

FenomenoPeriodoCausaPianeti coinvolti
Eccentricità lunga405 mila anniRisonanza g₂ - g₅Venere + Giove
Eccentricità breve95-125 mila annig₄ dominanteMarte
Eccentricità molto lunga2,4 milioni annig₃ - g₄Terra + Marte
Obliquità41 mila annis₃, s₄Terra + Marte
Precessione assiale25786 annicoppia Sole + Luna
Precessione orbitale112 mila annig₃Terra
Precessione climatica19-23 mila annicombinazioneTerra + Marte + Giove
gₙ = frequenze di precessione dei perieli (orbite)
sₙ = frequenze di precessione dei nodi (piani orbitali)
Tutti i periodi, eccetto il primo che è stabile, si riferiscono ai periodi attuali.

Conclusione

Bisogna però essere consapevoli che l’anidride carbonica di per sé non è un agente inquinante. Al contrario essa è indispensabile per la vita sul nostro pianeta. … L’origine antropica del riscaldamento globale è però una congettura non dimostrata, dedotta solo da alcuni modelli climatici, cioè complessi programmi al computer, chiamati General Circulation Models. La responsabilità antropica del cambiamento climatico osservato nell’ultimo secolo è quindi ingiustificatamente esagerata e le previsioni catastrofiche non sono realistiche …
L’illusione di governare il clima.
Manifesto negazionisti climatici italiani

I Cicli di Milankovitch non sono di certo una novità per chi segue da vicino l’astronomia. E le risonanze gravitazionali dei pianeti vicini (Venere e Marte) e dell’imponente nostro gigante gassoso (Giove, ma in misura minore anche Saturno) che agiscono sulla linea delle absidi e l’eccentricità dell’orbita planetaria non sono una scoperta dei climapiattisti di oggi.
Ho anche dimostrato, casomai ce ne fosse bisogno per qualche incauto senza mestiere, che il semiasse maggiore dell’orbita terrestre è costante nel tempo (non lo dico io ma le leggi di Keplero).
Quindi no. non ci sono state negli ultimi 170 anni variazioni orbitali repentine o fluttuazioni nella luminosità/temperatura del Sole [8] per giustificare il riscaldamento globale in atto [9].

Vedere poi, che tra i peggiori negazionisti italiani figurano anche alcuni professori universitari, mi provoca sgomento.
Come si può leggere, da uno stralcio del loro manifesto del 17 giugno 2019, riportato qui a fianco, di strafalcioni ne vedo parecchi, a cominciare dal loro motto che la \(CO_{2}\) non è un inquinante ma che è indispensabile alla vita del pianeta.
Ma sicuro, senza una atmosfera la temperatura di equilibrio della Terra sarebbe intoro ai 255 °K, ossia -18 °C. Ma la presenza di una atmosfera con una modesta quantità di anidride carbonica compresa tra i 200 e 300 ppm permette di avere una temperatura media planetaria compresa fra i 13 e i 15 °C, poco sopra il punto triplo dell’acqua.
I climapiattisti nostalgici di oggi spesso riportano le condizioni climatiche del Giurassico come esempio di come la vita prosperava sulla Terra nonostante che l’anidride carbonica atmosferica fosse ben più abbondate di oggi

Nel Giurassico (circa 200-145 milioni di anni fa), nonostante che il Sole fosse circa l’1% più debole di oggi (vedi sopra i lavori di Douglas Gouth) il clima era complessivamente più caldo e umido rispetto a quello attuale, con temperature medie globali superiori di 4-7 °C e minori differenze termiche tra equatore e poli.
In quell’era si verificarono tuttavia episodi di riscaldamento globale che determinarono crisi ecologiche e marine: picchi termici provocarono ampie zone oceaniche povere di ossigeno e estinzioni di massa, evidenziando la vulnerabilità degli ecosistemi ai cambiamenti climatici.
… In conclusione, posta la cruciale importanza che hanno i combustibili fossili per l’approvvigionamento energetico dell’umanità, suggeriamo che non si aderisca a politiche di riduzione acritica della immissione di anidride carbonica in atmosfera con l’illusoria pretesa di governare il clima.
L’illusione di governare il clima.
Manifesto negazionisti climatici italiani

Nel Mesozoico, incluso il Giurassico, la Terra si trovava in una fase di “clima serra”, molto più caldo rispetto a oggi: l’innalzamento del livello marino favorì la formazione di rocce sedimentarie marine, tipiche di ambienti caldi e umidi. Nei periodi di intenso riscaldamento (eventi anossici oceanici), legati a concentrazioni di \(CO_{2}\) fino a 1000-1500 ppm, causarono fioriture algali e gravi estinzioni marine.

Ai poli le temperature erano sensibilmente più alte, con ridotta differenza termica rispetto all’equatore.
Oggi tutti questi eventi estremi sono oggetto di studio per comprendere le reazioni degli ecosistemi ai cambiamenti climatici e alla perdita di biodiversità, offrendo importanti spunti per affrontare le attuali crisi ambientali.
Tornando al presente, invece la specie umana e la sua civiltà si sono tuttavia evoluti in condizioni molto diverse da quelle del Giurassico, con temperature medie globali di 14-15 °C e \(CO_{2}\) intorno a 250-280 ppm; nel Giurassico, L’Umanità non si sarebbe mai potuta evolvere fino allo stadio odierno.
Ridentem dicere verum: quid vetat?

È un’antica locuzione latina del poeta romano Orazio, che oggi potremmo riassumere in Arlecchino si confessò burlando.
In questo caso, potremmo riassumere tutto il pomposo manifesto negazionista climatico nella sua più semplice e provocatoria frase: data la fondamentale importanza dei combustibili fossili per l’approvvigionamento energetico globale, si raccomanda di evitare politiche di riduzione indiscriminata delle emissioni di anidride carbonica. 

Questo è il vero messaggio che si cela dietro al negazionismo climatico e ai deliranti sproloqui sui social dei climapiattisti: le variazioni orbitali della Terra, i cicli di Milankovitch, la \(CO_{2}\) è cibo per le piante [10], e tutte le altre menate possibili e immaginabili — fino a inventarsi falsi storici — per sostenere che l’eccesso di anidride carbonica rispetto ai livelli preindustriali non è responsabile del Riscaldamento Globale non è scientificamente sostenibile.


 

  • * SATIRE-T2 [11]
  • ** GISTEMP 3.1  (4) [12]

La CO₂ non è cibo per le piante: chimica reale contro bufale climatiche

Spesso appaiono in televisione, sui giornali e, soprattutto sui social, improbabili esperti tuttologi che affermano “la CO2 è cibo per le piante!“.
Il divertente, se non ci fosse da piangere, questi pseudoesperti sono più o meno anche coloro che attribuiscono il Riscaldamento Globale Antropogenico ai cicli di Milankovitch 1 e altre menate che ho goliardicamente riassunto nella prima immagine qui sotto.
Se non ci fosse da piangere, sarebbe da riderci su, come quando al circo appare il clown col naso rubizzo e guantoni enormi che, imitando il verso dei leoni marini, cerca di  distogliere gli spettatori da un imprevisto.
Ma nel nostro caso il cambiamento Climatico attuale non è un imprevisto, la comunità scientifica ne dibatte da mezzo secolo e proposto soluzioni mai prese seriamente in considerazione dai legislatori internazionali.

Il ciclo del carbonio nelle piante

Le stupidaggini di un climapiattista medio. Ripete sempre le stesse bischerate.

La \(CO_{2}\) è un gas, altrimenti chiamato anidride carbonica [13]. Non è cibo per le piante ma un gas serra che contribuisce tra il 9 e 26% a trattenere la radiazione infrarossa, proveniente dal Sole e riflessa dalla superficie, nella troposfera.  Certo, il vapore acqueo lo è molto di più – 36-70% -ma a differenza di questo i cui effetti durano pochi giorni, le molecole di anidride carbonica hanno una emivita nell’atmosfera di almeno 30-100 anni.

Per capire meglio il ruolo dell’anidride carbonica nella fotosintesi delle piante, riassumiamo come questa funziona:
Nella sua espressione più brutale la fotosintesi potremmo descriverla così

\[ 6\;CO_{2} + 6\; H_{2}O= + hv \longrightarrow C_{6}H_{12}O_{6}+ 6\;O_{2} \]

dove \(hv\) è un quanto di energia luminosa 2. Naturalmente questa e una semplificazione estrema: il glucosio \( C_{6}H_{12}O_{6}\) non è prodotto direttamente, ma questo lo ritengo un modo per indicare come avviene la fissazione del carbonio [14].
Ma le piante, seppur autotrofe, non sono diverse da ogni altro sistema biologico vivente: devono respirare.
E la respirazione avviene tramite glicolisi: la precedente molecola di glucosio viene scissa così:
\[ C_{6}H_{12}O_{6}+ 6O_{2} \to  6CO_{2} + 6H_{2}O + ATP \left( \text{adenosina trifosfato} \right) \]
e 6 molecole di anidride carbonica e 6 molecole d’acqua (che poi vedremo quanto esse saranno importanti in seguito) sono di nuovo rilasciate nell’ambiente.
E l’adenosina trifosfato è la fonte energetica del metabolismo cellulare.
Nella Respirazione il bilancio della fissazione della \(CO_{2}\) è nullo.

Poi c’è l’accumulo energetico a medio-lungo termine dell’energia  (un po’ come le nostre riserve di grasso) in due polisaccaridi vegetali: amilosio e amilopectina.
\[ \text{Glucosio} \to \overset{amido\;sintasi}{\left( C_{6}H_{12}O_{6} \right)_{n}} \]
Qui, per la prima volta, il carbonio viene integrato nelle piante.

Poi c’è la cellulosa, quella che ha la funzione di creare le pareti cellulari e che offre rigidità e protezione alle piante.
Qui il glucosio viene convertito in UDP-glucosio e poi in β-glucano (un altro polisaccaride complesso).
\[ \text{UDP-glucosio}\to \left( \beta\text{-1,4-glucano} \right)_{n} \]
E anche qui il carbonio contenuto nel glucosio rimane  fissato nelle piante.

Poi c’e la traslocazione del carbonio attraverso il floema [15] [16] sottoforma di linfa elaborata (acqua e saccarosio) verso gli organi non fotosintetici (radici, frutti, semi).
Qui il glucosio si combina col fruttosio (precedentemente prodotto dalla glicolisi di altre molecole di glucosio fosfato durate i Ciclo di Calvin [17])e si trasforma in saccarosio.
\[ \text{glucosio + fruttosio}\to \text{saccarosio}\]

ecco uno schema riassuntivo:

\[ \overset{\text{Fotosintesi} \longrightarrow \text{Glucosio}} \\
\left\{
{
\begin{array}{l}
\text{Respirazione (energia e nessun sequestro di }CO_{2}\text{)} \\
\text{Amido (riserva)} \\
\text{Cellulosa (struttura)} \\
\text{Saccarosio (trasporto)} \\
\text{Metaboliti vari (biosintesi)}
\end{array}
}
\right.
\]

 

La \(CO_{2}\) non è cibo per le piante

Nel Carbonifero (358-303 milioni di anni fa) la CO₂ era simile ai livelli attuali, la pressione parziale di O₂ era molto più alta (fino al 35%) e il Sole era più debole (2-3% meno di oggi).
La produttività primaria era enorme e la biosfera sequestrava carbonio in modo massiccio nella litosfera. Oggi stiamo liberando in atmosfera, in pochi decenni, il carbonio che la Terra aveva sotterrato in milioni di anni: il sistema climatico attuale non ha analoghi diretti nel passato.

Illustrare sommariamente la biochimica delle piante era necessario per capire perché la semplice anidride carbonica non è affatto cibo per le piante ma è soltanto una componente di un sistema molto più complesso a cui servono anche acqua \(H_{2}O\), fosforo \(P\), azoto \(N\) etc. per funzionare correttamente.
È vero, spesso in serra si usano bruciatori per aumentare la \(CO_{2}\) nell’ambiente chiuso per aumentare la resa delle colture, ma vengono forniti anche concimi e acqua in proporzione per aumentare la biomassa coltivata.
Ma nel mondo reale non funziona così: Anche se un aumento di qualche ppm di \(CO_{2}\) nella troposfera può aumentare la biomassa vegetale momentaneamente.
Questo maggiore apporto porta le piante in ambiente naturale a assorbire più  acqua e gli altri oligoelementi necessari al loro sviluppo a scapito del suolo. Livelli più alti di \(CO_{2}\) atmosferica spingono le piante ad produrre minori quantità di proteine su terreni poveri. Come confermato da una mastodontica meta-analisi del 2025 [18]. Circa 59.000 campioni, 43 colture mostrano un calo pesante dello zinco e anche le proteine ​​e il ferro calano in modo significativo. Non è solo diluizione: è un vero cambiamento nella composizione del cibo. E quando il terreno rimane povero o sterile c’è poco da fare: lì le biomasse vegetali si ridurranno o non cresceranno più affatto.
Questo significa che in sostanza più \(CO_{2}\) troposferica alla lunga porta alla desertificazione del suolo.

L’effetto serra

Poi c’è l’effetto serra, che complica ulteriormente le cose.
Le temperature dell’aria variano ampiamente su scale temporali che spaziano da ore a giorni, settimane, mesi e stagioni. In quanto organismi autotrofi sessili, le piante sono esposte a questa ampia gamma di condizioni termiche e hanno sviluppato numerose strategie per percepire e affrontare i cambiamenti di temperatura, e, in misura limitata, regolarne la propria. Sebbene tali adattamenti consentano alle piante di prosperare in diverse condizioni di crescita, la temperatura influisce direttamente su tutti gli aspetti delle attività biochimiche e biofisiche a livello cellulare, d’organo e dell’intera pianta. Le temperature delle piante spesso differiscono da quelle dell’aria a causa dell’assorbimento di radiazioni, della traspirazione e di altri fattori, ma l’aumento termico dell’aria e della chioma è legato al bilancio energetico, determinando un incremento diretto della temperatura vegetale.
Le piante possono acclimatare processi metabolici chiave al variare delle condizioni di crescita, ma tali adattamenti mirano principalmente alla sopravvivenza, non sempre al mantenimento di un’attività fisiologica ottimale per la massima crescita o resa.
Proiezioni indicano che temperature superiori ai 30 °C possono ridurre le rese delle colture principali, una soglia spesso superata e destinata ad aumentare con il riscaldamento globale.
Esperimenti su colture di soia esposte a 3.5°C  sopra altri lotti di controllo, ossia con temperature massime giornaliere che variavano da 32,5°C a 41,5°C, hanno mostrato un  calo della fotosintesi del 15%. Per cui, anche se un più alto livello di \(CO_{2}\)  può portare a un aumento della fotosintesi,  quando  l’acqua è scarsa, la fotosintesi si riduce poiché lo stress da siccità può portare alla chiusura degli stomi e persino alla clorofilla [19] . Analogamente, a temperature elevate, l’aumento della fotosintesi indotta dalla \(CO_{2}\) viene compensata da una diminuzione dell’attività enzimatica[20] [21]. In alcuni casi, la combinazione di siccità e temperatura elevata può portare a risposte fisiologiche superiori agli effetti individuali, suggerendo effetti sinergici negativi ([22] [23]
Di conseguenza, il riscaldamento attuale e futuro, insieme alla frequenza crescente di eventi estremi di calore, rappresenta una sfida significativa per l’acclimatazione e il successo fisiologico, morfologico, di crescita e riproduttivo delle piante nella biosfera terrestre [24].
Come detto prima, una maggiore disponibilità di \(CO_{2}\) deve essere compensata da altri elementi, come l’azoto. Ma pur se questo rappresenta il 78% dell’atmosfera le piante non lo possono processare direttamente, ma lo estraggono con le radici sotto forma di nitriti, nitrati e sali.
Altrimenti, le piante crescono più stente e deboli [25], rimanendo più esposte ad attacchi parassitari [26].
Tradotto in poche parole, l’aumento dell’anidride carbonica nell’atmosfera riduce l’apertura stomatica e quindi riduce la traspirazione. Di conseguenza, così aumenta la temperatura fogliare, peggiorando lo stress termico.

L’acidificazione del suolo

La maggior parte delle piante cresce bene in terreni neutri o leggermente acidi (pH 6.0-7.5), dove nutrienti come azoto, fosforo e potassio sono facilmente assorbibili. L’acidificazione del suolo è un problema che, se non corretto, porta alla desertificazione del suolo.

È vero che l’aumento della \(CO_{2}\) atmosferica stimoli in genere il processo della fotosintesi e l’assorbimento dei nutrienti da parte delle piante, alterando i cicli locali e globali degli elementi bioattivi. Sebbene i cationi nutritivi rivestano un ruolo cruciale nella produttività a lungo termine e nel bilancio del carbonio degli ecosistemi terrestri, l’impatto dell’aumento di \(CO_{2}\) sulla disponibilità di tali cationi nel suolo non è del tutto chiaro.
Ma ci sono evidenze di un nuovo meccanismo attraverso il quale l’incremento di \(CO_{2}\) favorisce il rilascio di cationi dal suolo nei sistemi agricoli a coltivazione di riso.
Concentrazioni elevate di \(CO_{2}\) hanno determinato una maggiore allocazione di carbonio organico nel sottosuolo e una escrezione netta di ioni \(H^{+}\) dalle radici, stimolando la respirazione radicale e microbica, abbassando il potenziale di ossidoriduzione del suolo e incrementando le concentrazioni di \(Fe^{2+}\) e\(Mn^{2+}\) nelle soluzioni circolanti.
L’aumento di \(H^{+}\), \(Fe^{2+}\) e \(Mn^{2+}\) promuove il rilascio di \(Ca^{2+}\) e \(Mg^{2+}\) dai siti di scambio cationico del suolo. Questi risultati suggeriscono che, nel breve periodo, livelli elevati di \(CO_{2}\)  intensificano il rilascio di cationi dal suolo, favorendo la crescita vegetale; nel lungo periodo, tuttavia, tale processo porta alla perdita di cationi e l’acidificazione del suolo, con gravi conseguenze negative sulla produttività degli ecosistemi terrestri — a pH molto bassi (sotto 5.5), l’alluminio diventa tossico e altri elementi come molibdeno scarseggiano, comprese le falde acquifere. E  anche il ricorso massiccio di fertilizzanti, usati per inseguire l’aumento della \(CO_{2}\) atmosferica, per esempio per sopperire alla riduzione dell’azoto disponibile per le piante, tendono ad acidificare il terreno.
Anche questo significa che l’aumento di \(CO_{2}\) non solo non nutre le piante, ma accelera la perdita di nutrienti essenziali dal suolo, rendendo gli ecosistemi meno resilienti.

Conclusione

La letteratura scientifica sull’argomento è sterminata, impossibile citarla tutta. Molti studi si concentrano — comprensibilmente — sulle colture destinate all’alimentazione umana, ma il quadro generale è sempre lo stesso: l’anidride carbonica si comporta come un dopante. Da un lato può stimolare la fotosintesi, dall’altro altera profondamente l’equilibrio fisiologico delle piante.
L’effetto di fertilizzazione del carbonio (CFE) globale sta già declinando dagli anni ’80 per mancanza di nutrienti e acqua [27]. Molti modelli climatici sovrastimano il salvagente vegetale – e noiperò poi paghiamo il conto.

E se questo non bastasse, l’aumento delle temperature dovuto al maggiore effetto serra accelera la traspirazione fogliare, costringendo le piante a chiudere gli stomi per non perdere acqua. A quel punto la fotosintesi rallenta o si blocca del tutto.

In passato 3, in epoche molto diverse dalla nostra, un’atmosfera ricca di CO₂ poteva favorire una crescita vegetale esplosiva. Ma allora il pianeta era privo di ghiacci, gli ecosistemi erano dominati da autotrofi primitivi e non esistevano grandi erbivori a consumare biomassa. La vegetazione cresceva, moriva e si accumulava in un ciclo continuo che oggi non è più replicabile.

Oggi, invece, quell’equilibrio non esiste più. Aumentare la CO₂ non nutre le piante: le stressa, le indebolisce e altera gli ecosistemi da cui dipendiamo. È un mito comodo per i climapiaattisti, ma resta un mito.

Il negazionismo climatico al tempo dei no-vax

È passato molto tempo dall’ultima volta che ho scritto qualcosa su questo blog. L’intenzione sarebbe di scacciare questa pessima abitudine e riprendere a usare questo spazio. Per un po’ ho affidato i miei pensieri e le esternazioni ai Social, ma ora sento che ho fisicamente bisogno di un luogo dove conservarli. Non so se ci riuscirò, non resta che provare.

 

 

Indice incremento annuale dei gas serra nell'atmosfera.

A partire dal 2021, l’effetto di riscaldamento dei gas serra di lunga durata nell’atmosfera terrestre è aumentato del 49% rispetto al 1990. Rispetto all’epoca preindustriale, l’atmosfera odierna assorbe più di 3 Watt in più di energia per metro quadrato.

Dal punto di vista razionale l’ideologia dei no-vax e i negazionisti climatici hanno in comune il totale rigetto delle evidenze scientifiche che si basano sui dati.
Dati che, come ogni cosa quando si cerca di comprendere un qualsiasi fenomeno, sono sempre la base da cui partire. Non è la prima volta — e non sarà certo l’ultima — che spiego cosa sia il Global Warming e che sia la diretta conseguenza delle attività umane.
La congettura che in questi giorni va per la maggiore, pare appartenere a un professore associato dell’Università Federico II di Napoli — non cito il suo nome per non offrirgli maggiore visibilità che qui non merita.  Tale  presunzione quasi sicuramente non è nuova, è presente da diversi anni con qualche variante, nei circoli negazionisti che suppongono che il Riscaldamento Globale non esista affatto o che, al limite, sia il risultato di risonanze orbitali dei pianeti ed effetti gravitazionali ciclici. Questo  professore associato, oggi paladino dei negazionisti italiani che hanno ampio appoggio nei circoli politici del centrodestra italiano, ama raccontare di essere riuscito, nel 2018, a prevedere l’attuale siccità.
In pratica, in altri tempi, si sarebbe parlato di case astrali, di congiunzioni e opposizioni, di transiti dei pianeti su e giù per l’eclittica e di altre amenità astrologiche.

Per l’ennesima volta, l’emissione energetica del Sole è stabile da quando sono iniziate le campagne di misurazione satellitare mentre è cambiata la concentrazione di CO2 nell’atmosfera e negli oceani. E le proporzioni isotopiche tra 13C e 12C [28] confermano che è anidride carbonica emessa dalla combustione di fonti fossili.

Questi sono i dati: l’atmosfera terrestre a causa dell’effetto serra innescato dalla CO2 ora trattiene 3 watt per metro quadrato in più rispetto al periodo preindustriale ed è tanto.
L’immagine di destra mostra che l’irraggiamento solare varia di neanche 2 watt tra il periodo minimo e massimo di attività solare. È un ciclo undecennale, a cui si sommano altri cicli legati a periodi di maggiore o minore quiescenza dell’attività solare, che, inn tempi storici, hanno prodotto il Minimo di Maunder (d’inverno il Tamigi divenne una pista di pattinaggio) nel XVIII secolo oppure il Massimo Medievale. Questo grafico mostra due cose: che per quanto piccolo, se protratto per lungo tempo (il Minimo di Maunder fu innescato da 50 anni di inattività solare) una variazione comunque piccola, abbiamo detto un paio di watt per metro quadrato, ha senz’altro conseguenze sul clima del pianeta. Una variazione di qualche decimo di grado dell’acqua degli oceani può alterare le correnti oceaniche e le precipitazioni, soprattutto ai tropici, con conseguente riallineamento delle correnti cicloniche dell’atmosfera. Ma, il secondo appunto, per colpa dell’eccesso di emissioni di gas serra a opera dell’Uomo, ora l’atmosfera trattiene, come ho detto prima, ben tre watt in più di energia ricevuta dal Sole. Oggi un periodo di quiescenza del Sole della durata di cinquanta anni, sarebbe notato al più come un periodo di tregua del riscaldamento globale, dando adito ai negazionisti climatici di sproloquiare che non è in atto “alcun cambiamento climatico“.

Quest’ultima immagine mostra lo storico delle temperature medie della Terra da quando sono disponibili correlandole con lo storico dell’attività solare. Qui è ancora più evidente che la temperatura media del pianeta, che prima dell’era industriale seguiva grossomodo l’attività del Sole con un fisiologico margine di latenza, mentre adesso non è più così.
E l’andamento a crescere  per ora è inarrestabile. Ne abbiamo avuto la riprova durante il lungo lock down della Pandemia.
Nonostante il fermo quasi totale delle attività umane, il brusco calo dello smog nelle aree industrializzate etc. le quantità di anidride carbonica nell’atmosfera è continuata a crescere!
Magari, ancora un a volta, i negazionisti climatici avranno ancora berciato: “Vedete? Nessuna attività umana, eppure la COè aumentata! Le attività umane non sono responsabili del Global Warming!“.
I bischeri però dimenticano che gli oceani ricoprono oltre del 70% della superficie della Terra. E che essi hanno assorbito gli eccessi di CO2 presenti nell’atmosfera al ritmo di 7 miliardi di tonnellate per anno fino ad un certo punto (circa 500 dall’inizio dell’era industriale), fino a quando cioè  le acque superficiali si sono saturate 1.
Ma è in virtù della legge sui gas soluti in un liquido (Legge di Henry) — che un qualsiasi studente di chimica conosce fin dalle scuole superiori  — che, riscaldandosi, gli oceani hanno iniziato a restituire milioni di tonnellate equivalenti di anidride carbonica all’atmosfera. Per questo il fermo delle attività industriali non ha sortito alcun cambiamento nelle emissioni di CO2. Quindi anche se adesso, da domani, cessassimo ogni ricorso alle fonti fossili per produrre energia, il Riscaldamento Globale non cesserà e sarà un tremendo problema ancora per decenni, forse secoli, prima che si ricrei un accettabile equilibrio naturale. Per questo ogni secondo, ogni singolo grammo di CO2 impunemente rilasciata nell’atmosfera è un crimine verso le future generazioni.

Ma non dovete credere per forza a me, credete ai dati. Questa è scienza, le altre ciarle sono al più un oroscopo pure malfatto.

Global Warming for dummies (prima parte)

Ho ascoltato con somma pazienza qualcuno affermare che a Bergamo con un paio di gradi in più si starebbe meglio.
Ma quando leggo di professori universitari o politici di una certa rilevanza — almeno mediatica — sparare castronerie come quelle che sento in questi piovosi giorni che “siccome oggi fa freddo allora il Global Warming è tutta una truffa mediatica“, vengo assalito dal tremendo dubbio se realmente stiano marciando così per propria convenienza (più probabile) o perché ne siano convinti (assai meno probabile).
Per questo ho deciso di tornare sull’argomento.

 

Articolo di giornale

Prima pagina di un (pessimo) giornale a tiratura nazionale.Il nome della testata è stato volutamente cancellato.

Nei giorni scorsi qualcuno mi fece notare la prima pagina di un quotidiano a tiratura nazionale, che qui ripropongo, per dimostrare quanto sia ancora controverso il dibattito sul Global Warming
Sì, qui ora mentre scrivo fa ancora freddo per essere metà maggio. Ma mentre qui e su più o meno tutta l’Europa centrale fa un po’ più freddo della media stagionale, in Spagna, nel sud della Francia e in Turchia la situazione è opposta. 
Coloro che denunciano l’inesistenza del Riscaldamento Globale trincerandosi dietro a una situazione meteorologica particolare hanno torto marcio. Non posso affermare se questa loro convinzione derivi dalla mancata comprensione del tema, dalla confusione che spesso viene fatta tra tempo meteorologico (locale sia nello spazio che nel tempo) e clima (andamento regionale o globale esteso nel tempo e depurato da fattori stagionali), oppure che si tratti di una scelta cosciente e ponderata.
Purtroppo propendo per questa seconda ipotesi, portata avanti da una corrente politica conservatrice e reazionaria transnazionale che si fa beffe del rischio globale che la civiltà umana in questo momento corre.
No, non penso che l’umanità corra il rischio di soccombere entro i prossimi decenni o secoli, ma tutta la nostra civiltà, il villaggio globale che faticosamente abbiamo costruito negli ultimi due secoli, potrebbe soccombere molto presto a causa della nostra scelleratezza se non abbiamo la volontà e la forza di correggere i nostri errori. 

Quindi non mi sento tranquillo quando sento gioire un uomo politico per lo scioglimento dell’Artide perché così si aprono nuove rotte commerciali[29] (dopo che il suo governo ha sempre negato che esista il Global Warming) e neppure quando vedo certi titoloni sbattuti in prima pagina come questo sopra che gioca pure sulle parole dando di fatto degli idioti a chi, in tutti questi anni, ha denunciato le pesanti responsabilità umane nell’attuale cambiamento climatico.

Dopo questa pesante filippica dove respingo ai mittenti la definizione di sciocco indirizzata verso chi si batte per sensibilizzare l’opinione pubblica e promuovere politiche di contenimento di un processo ormai quasi irreversibile quale è il Global Warming antropogenico, torno a spiegare cos’è e perché capita che, nonostante la tendenza al rialzo delle temperature medie del pianeta nel lungo periodo, possa in alcuni momenti fare ancora più freddo del solito.
Impiegherò un paio di puntate perché l’argomento non è difficile da comprendere ma lungo da spiegare ma spero lo stesso di riuscire nell’intento. Dopodiché sta a voi lettori cercare di spiegare agli scettici che incontrerete come stanno le cose.

Le prove che inchiodano le pesanti responsabilità umane: gli isotopi del carbonio.

Ciclo del carbonio atmosferico

Il ciclo del carbonio atmosferico in sintesi. La riga di centro indica i principali serbatoi naturali di carbonio. In verde sono descritti i principali processi che sottraggono il carbonio nella forma di CO2 dall’atmosfera. In rosso tutti gli altri, che cioè rilasciano carbonio. Credit: Il Poliedrico

Nessuno scienziato nega che il clima nei secoli scorsi sia stato anche molto diverso da quello attuale, ma i meccanismi di scambio gassoso con la litosfera hanno mantenuto per milioni di anni il tasso di concentrazione dell’anidride carbonica dell’atmosfera entro i 150-300 parti per milione. I complessi meccanismi alla base del ciclo naturale del carbonio (in realtà sono due: il ciclo organico e quello geologico) sono i responsabili di queste contenute oscillazioni: una minor concentrazione della CO2 atmosferica — sottratta dalle piante — porta all’abbassamento della temperatura a livello globale, ossia a una glaciazione; di conseguenza, anche le foreste che sequestrano l’anidride carbonica atmosferica trasformandola in lignina diminuiscono di pari passo con l’avanzata dei ghiacci mentre le emissioni vulcaniche intanto rimangono sempre abbastanza costanti. Questo ultimo fatto porta lentamente a un rialzo della percentuale di CO2, un riscaldamento globale naturale che sottrae di nuovo spazio ai ghiacciai e lo restituisce alle piante. E così all’infinito: cicli interglaciali caldi con alti (max 300 ppm) tassi di anidride carbonica atmosferica intervallati da periodi glaciali in cui la CO2 è più bassa (150-180 ppm).
L’anidride carbonica sequestrata dalle foreste sotto forma di lignina tramite processi di marcescenza e alte pressioni finisce per trasformarsi in carbone, mentre i medesimi processi trasformano in petrolio e gas naturale gli animali che, nella loro catena alimentare, in definitiva si sono nutriti di quelle stesse piante. Con l’inizio dell’Era Industriale tutto questo è cambiato: in appena 250 anni, e specialmente nell’ultimo secolo, l’Uomo ha imparato a sfruttare a proprio vantaggio l’energia racchiusa in quei serbatoi naturali di carbonio attraverso la combustione di quelle sostanze (combustibili fossili). Quindi buona parte di quel carbonio sequestrato dall’atmosfera in milioni di anni è stato liberato di nuovo in appena un paio di secoli e poco più.

Clima

Concentrazione della CO2 nell’atmosfera negli ultimi 800 mila anni (ppm). Credit NOAA/Il Poliedrico

La riprova di quanto ho detto sta nei rapporti isotopici del carbonio atmosferico: il 12C e il 13C sono due isotopi stabili del carbonio e poi c’è anche il 14C, un radioisotopo del carbonio che ha origine dall’interazione dell’azoto atmosferico coi raggi cosmici secondo lo schema: $$ n + \ ^{14}N \rightarrow p +\ ^{14}C $$
Il radiocarbonio 14 (6 protoni e 8 neutroni) ha una emivita di appena 5715 anni, ossia circa la metà degli atomi di una certa quantità di 14C torna ad essere 14N (azoto 14) per effetto del decadimento β in quasi 6000 anni.  Siccome la quantità di raggi cosmici negli ultimi 100 mila anni è più o meno costante, anche la quantità di 14C atmosferico è rimasta pressappoco la stessa (circa 70 tonnellate) nel medesimo arco di tempo[30]. Il naturale decadimento radioattivo del carbonio 14 comporta che esso sia praticamente assente nei combustibili fossili, e infatti sono circa due secoli che i naturali rapporti tra gli isotopi 12C, 13C e 14C espressi negli ultimi 800 mila anni stanno mutando come conseguenza al consumo di questi 1.
Sempre rimanendo a parlare di isotopi del carbonio, occorre anche ricordare che a parità di proprietà chimiche i processi biologici prediligono sempre gli atomi più leggeri 2: per questo nell’anidride carbonica prodotta dall’uso dei combustibili fossili il δ13C è sbilanciato in favore della versione più leggera dell’atomo di carbonio (12C).
E come detto in precedenza, dalla combustione di fonti fossili è assente la versione più pesante del carbonio (14C) perché esso dopo appena 75 mila anni è ridotto a circa 1 millesimo di quanto era stato sequestrato all’inizio. Quindi, è l’analisi temporale dei rapporti fra i diversi isotopi che ci conferma che l’attuale surplus di anidride carbonica atmosferica è dovuta all’uomo e alle sue attività energivore basate sui combustibili fossili.

Non sono io, non è qualche scienziato prima di me o la ragazzina svedese Greta Thunberg a dirlo: sono gli isotopi del carbonio a farlo; i fatti, quelli su cui ogni giornale dovrebbe basarsi e sui quali qualsiasi politico dovrebbe tener conto prima di prendere una decisione che potrebbe influire sulla collettività, sono questi.


(fine prima parte)

Geoingegneria del clima fra superstizione e studi di fattibilità

Mi spiace essere assente su queste pagine così a lungo come in questo periodo. In verità è che sono concentratissimo nel portare avanti il mio antico progetto di costruire un astroinseguitore alla mia maniera, che vorrei terminare prima della eclissi di Luna di luglio. Ma torniamo a noi. Spesso purtroppo esiste un limite sottile oltre il quale molti non osano andare a guardare, un po’ come quelle vecchie signore scandalizzate che in spiaggia si turavano gli occhi alla vista di un bikini ben indossato, lasciando però aperta una sottile fessura per sbirciare meglio. Con questa metafora voglio dire che invece la scienza ha l’obbligo di vedere e di indagare anche e soprattutto è sconveniente.
La scienza è uno strumento. Intellettuale ma pur sempre e solo uno strumento. Non è di per sé buona o cattiva come taluni vogliono che si creda, e piegarla al proprio volere è negare la sua natura.

 

[video_lightbox_youtube video_id=”j_zFD8y30rk&rel=false” auto_thumb=”1″ width=”800″ height=”450″ auto_thumb=”1″]

Nei giorni scorsi mi è capitato di dover affrontare una spinosissima discussione che è in bilico tra le bischerate (le cosiddette fake-news per i detrattori della lingua italiana) e la scienza. Tutto parte da un vecchio servizio del TG2 RAI scritto, come loro solito sui temi di natura scientifica, coi piedi.
Il servizio fa riferimento a uno studio dell’Università di Harvard [31] che parla di test per determinare quale tipo di aerosol può essere efficace ad essere distribuito nell’atmosfera per innescare un calo della sua temperatura e sui suoi effetti sull’ambiente.

“A metà mattina di Pentecoste, l’8 giugno 1783, in un tempo sereno e calmo, una nera foschia di sabbia apparve a nord delle montagne. La nube era talmente estesa che in breve tempo si era diffusa su tutta la superficie e così densa da causare oscurità all’interno. Quella notte vi furono forti terremoti e tremori “
Jón Steingrímsson, sacerdote luterano islandese (1728, 1791)

Di per sé non è un’idea nuova. Già altri in passato avevano proposto di cospargere la troposfera con biossido di zolfo (anidride solforosa) dopo aver notato gli effetti dell’aerosol vulcanico sul clima nell’eruzione del vulcano Pinatubo del 1991 [32]. Anche se  quindi si tratta di imitare in qualche modo quello che già avviene in natura, le eruzioni vulcaniche, l’idea non è poi così innocua.
Negli anni immediatamente successivi al 1793-1794 l’intero continente europeo venne sconvolto da una terribile carestia provocata dall’eruzione del vulcano islandese Laki: le cronache inglesi e irlandesi parlarono di mesi tristi e senza sole; gli effetti furono percepiti fino in Giappone e in Egitto [33]. Furono le piogge acide e il repentino calo delle temperature a scatenare la terribile carestia che poi condusse il popolo francese ormai stremato alle rivolte che culminarono con la Rivoluzione Francese.
Inoltre,  altro effetto altrettanto importante, è la deplezione dello strato di ozono [34]. Già tutto questo dovrebbe bastare a rendere l’ipotesi di riprodurre il comportamento dei vulcani una pessima idea.
Ma questo chi studia il clima lo sa già ed è per questo che il gruppo di Harvard vuole esplorare altre vie che non prevedano la SO2, e quindi parlano di testare vapore acqueo, calcite (carbonato di calcio), ossido di alluminio (allumina) e perfino polvere di diamante su piccole aree usando banali palloni sonda con carichi di un chilogrammo. Altri studi analoghi prendono in considerazione anche altri tipi di particolato, come anche ad esempio polveri con qualità fotoforesiche 1 L’effetto prodotto da queste ricerche è quasi nullo anche per l’area interessata dagli esperimenti ma misurabile. 

Niente di cui preoccuparsi?

Nel 1783 l’eruzione del vulcano islandese Laki influenzò per quasi un decennio il clima del pianeta.

Di certo non dei test in sé, al di là di qualsiasi risultato essi diano; ho più timore dello scarso acume di chi vede in tutto questo un sinistro disegno di controllo e/o di sterminio della razza umana nascosto dietro questi test. Non è certo un chilo di polvere, per quanto strana essa sia, a doverci preoccupare. La Terra nella sua perenne corsa nello spazio raccoglie ogni giorno tonnellate di schifezze spaziali di ogni tipo  [35]. Non mi credete? State qualche giorno senza spazzare sotto il vostro letto e con la finestra aperta. Poi raccogliete la lanuggine e passatela con una calamita; vedrete alcune particelle più o meno piccole, alcune di queste saranno  addirittura microscopiche: quello è pulviscolo cosmico, resti di meteore che ogni giorno intersecano la Terra e vengono distrutte nella fase del loro ingresso nell’atmosfera e rimangono sospese nell’aria prima che si posino sotto il vostro letto.
Oppure, se vogliamo rimanere sugli effetti antropogenici, cioè quelli causati dall’uomo, basti pensare all’inquinamento atmosferico delle nostre città: i dati dell’Agenzia Europea dell’Ambiente affermano che i decessi prematuri legati all’inquinamento atmosferico (esposizione a lungo termine al particolato, al biossido di azoto e all’ozono) che si verificano in Europa sono 487600, con il dato italiano molto al di sopra di questa media, con ben oltre 90 mila morti premature ogni anno. Tanto per notare l’entità del disastro ambientale basta salire di quota qualche centinaio di metri e osservare il panorama più in basso verso l’orizzonte. Vedrete una cappa d’aria grigiastra, una caligine mefitica ben più pericolosa per la salute pubblica di qualche test e qualche chilo di polvere sparato intenzionalmente nella stratosfera.
In realtà temo le conseguenze politiche di quei test, che nondimeno appoggio come uomo di scienza. Se quelle teorie si dimostrassero efficaci per ridurre la temperatura del pianeta e innocue per l’ambiente, qualcuno potrebbe pensare che tutto sommato potrebbe non essere una cattiva idea usarle piuttosto che spendere migliaia di miliardi di dollari per abbandonare le energie fossili non rinnovabili. Governi troppo pavidi potrebbero essere spinti a non considerare troppo l’uso delle energie rinnovabili pur di preservare precedenti investimenti nel carbone, petrolio, gas e biomasse in cambio di una spruzzatina qua e là. Senza contare il fatto, come insegna la storia delle eruzioni vulcaniche, una tale operazione per la modifica del clima su scala globale cesserebbe la sua efficacia non appena cessassero le operazioni di dispersione artificiale. Pertanto un rilassamento nelle politiche energetiche a favore delle fonti fossili riproporrebbe, accentuati, gli attuali problemi legati al Global Warming.

Studi di fattibilità

Un Aiurbus Beluga può trasportare carichi di 40 tonnellate per un raggio di 2700 km oppure di 25 per 4600 km.

Una seria analisi dei costi fu svolta nel 2012 coinvolgendo l’Aurora Flight Science Corporation, la School of Engineering and Applied Sciences and Kennedy School dell’Università di Harward e la Tepper School of Business and Department of Engineering and Public Policy dell’Università Carneige Mellon [36]
La cosa sconvolgente è che questo studio pare dimostrare che l’iniezione di SO2 nella troposfera allo scopo di innalzare artificialmente l’albedo del pianeta possa essere una strada teoricamente fattibile e dal costo non poi così elevato: infatti questo afferma che basterebbero da 1 a 5 milioni di tonnellate di materiale particellare all’anno tra i 18 e i 30 chilometri di quota per un costo annuale di soli appena 8-10 miliardi di dollari americani di quell’anno. Altri studi simili furono elaborati durante l’ amministrazione di George Bush senior 2 e nel 2009 e nel 2010. Questi essenzialmente si basano sul particolato di zolfo, che sappiamo essere comunque un agente inquinante, e prendono spunto dai normali voli di linea intercontinentali — quelli cioè che toccano quote di 10000 metri — che potrebbero usare carburante con un più alto tenore di zolfo durante la crociera, mentre nelle fasi di decollo e di atterraggio potrebbero usare il carburante più pulito, grazie al fatto che negli aerei il carburante è comunque già stoccato in diversi compartimenti fra loro indipendenti. Poi sarebbero i venti a disperdere il particolato più in alto nell’atmosfera.
Usare altri tipi di particolato, potrebbe essere ben più complicato e costoso. Mentre nel caso del biossido di zolfo questo è già presente in tracce nel comune carburante di bassa qualità disponibile per gli aerei di linea e quindi meno costoso,  per tutti gli altri casi si tratterebbe di voli studiati solo per questo scopo: occorrerebbero tra i 100 e i 200 mila voli di aerei come l’Airbus Beluga per trasportare 5 milioni di tonnellate all’anno di particolato che non sia zolfo a soli 10000 metri di quota.

Per ora termino qui la prima parte, ben immaginando che qualcuno penserà che stia diventando uno scia-chimista anch’io e nel caso potrò farmi delle grasse risate alle sue spalle. Niente paura: presto arriverà anche la seconda parte e allora capirete che non mi sto rincoglionendo! 😛
Cieli sereni!