La Notte Europea dei Ricercatori: ormai ci siamo!

RhOME for denCity! L’Italia è campione del mondo in Architettura Sostenibile

In un mondo sempre più globalizzato e con gran parte del lavoro manifatturiero affidato sempre più alle macchine e sempre meno all’uomo, la redistribuzione della ricchezza globale – che porta benessere – generata finora per la maggior parte dalla produzione industriale rischia di bloccarsi definitivamente. Emerge quindi la necessità di spostare  la richiesta di lavoro dalla produzione di beni verso nuovi servizi e comparti dove la presenza umana è importante. Questa sfida può essere vinta solo puntando sulla scolarizzazione universitaria di massa, sulle specializzazioni e la ricerca scientifica.
A chi obbietta che “la cultura non si mangia”  e a chi esprime perplessità sulla ricerca di base definendola dispendiosa e senza ricadute immediate, basta ricordargli le zampette di rana di Alessandro Volta o gli esperimenti di Michael Faraday che dettero l’abbrivio per le Equazioni di Maxwell sull’elettromagnetismo. Senza il contributo di scienziati e ricercatori come loro non ci sarebbero state tutte le comodità, i beni e i servizi che abbiamo oggi.
Per questo l’Unione Europea conta molto sulla scienza, la cultura e la ricerca per il suo futuro.

Poco tempo fa illustrai per sommi capi la prossima Notte Europea dei Ricercatori, progetto finanziato dalla Commissione Europea nata per sensibilizzare il pubblico sull’importanza della ricerca scientifica in Europa.
La manifestazione che ne fa da cornice è la Settimana della Scienza che inizia il 22 settembre e termina il 26, il cui tema, ricordo, è la Sostenibilità intesa nelle sue diverse espressioni: dall’ambiente all’architettura, dall’agricoltura all’energia, passando per tutte le voci interessate, ma non solo. Ad esempio a Roma si parlerà anche di dinosauri e di vulcani extraterrestri, ma anche di scuola nell’era  della globalizzazione per un futuro sostenibile, mentre a Frascati sarà ospite l’astronauta italiano Paolo Nespoli.
Insomma i temi trattati sono ampi e vari, vale la pena di consultare il link al programma della Notte Europea dei Ricercatori disponibile qui, o cercare tra le varie città più vicine cosa offrono per l’occasione.
E come ormai è uopo ricorrere ai servizi di social networking per coinvolgere sempre più persone, anche per la Notte Europea Dei Ricercatori dalle 20:00 del 26 settembre sarà disponibile l’hashtag Twitter #ern. Così sarà possibile seguire in tempo reale la manifestazione ovunque voi siate.

 

Cosa c’era prima e il centro dell’Universo

 

Per la scienza sono più importanti le domande che le risposte. Potremmo considerarle, a ragione, proprio il motore dell’evoluzione umana. Le risposte sono invece, quasi per definizione, parziali e imprecise. Se non lo fossero, a risentirne sarebbe proprio lo sviluppo del pensiero umano, Se ci fossimo accontentati della cosmologia aristotelica, forse ora sarei qui a parlare di emicicli. Se avessimo seguito la convinzione imperante alla fine del XIX secolo che tutto era stato ormai scoperto, sicuramente oggi non saremmo qui perché la rivoluzione elettrica ed elettronica non sarebbe stata possibile senza il coraggio di chi ha saputo rimettere in discussione quanto era stato prima affermato.
Anche le mie risposte possono rivelarsi sbagliate, d’altronde non ho la scienza infusa in me e né pretendo di averla; questo lo lascio giudicare a voi. Comunque ricordate che sono sempre le domande che fanno il progresso.

 [latexpage]

Copyrigh: Iole Vaccaro   qui

Universe
Copyrigh: Iole Vaccaro
Emozioni Grafiche in Movimento

Qualche volta mi è capitato di partecipare a convegni e conferenze di cosmologia e tra gli interventi del pubblico in sala al momento del dibattito ricorrono spesso delle domande apparentemente banali, quasi fanciullesche nell’esposizione ma che in realtà invece sono terribilmente complesse. 
Rispondere a queste domande non è facile quanto porle, il problema vero sta nella nostra naturale e limitata capacità di intuire l’Universo e nel linguaggio per esprimerlo.
Come ebbe a dire Galileo Galilei, la matematica è l’alfabeto con cui Dio ha scritto l’Universo e il linguaggio per descriverlo il più fedelmente possibile è appunto la matematica. Invece il linguaggio naturale che abbiamo sempre parlato è un linguaggio limitato per esseri limitati, descriviamo tutto coi nostri sensi, con le nostre esperienze e limiti. Diamo per scontato che tutto abbia un inizio e quindi poi una fine; che ci siano solo tre dimensioni spaziali perché sperimentiamo continuamente un sopra e un sotto, un qui e là, un avanti e un indietro. 
Un magistrale racconto  scritto nel 1884 da Edwin Abbott, Flatlandia 1, esprime più di ogni altra parola il concetto della ristrettezza del nostro linguaggio naturale. Questa limitata capacità di linguaggio si riflette poi nella comprensione della complessità del Cosmo; per questo viene spontaneo farsi queste domande.

  • Se è vero che l’Universo si espande, attraverso cosa si espande?

Expansion of spacetime Copyrigh: Iole Vaccaro Emozioni Grafiche in Movimento

Expansion of spacetime
Copyrigh: Iole Vaccaro
Emozioni Grafiche in Movimento

Tutti noi abbiamo un orologio o un segnatempo, sia  esso anche una clessidra per cuocere le uova.
Quando lo osserviamo non ci stupiamo dei secondi, dei minuti e delle ore che crescono sempre. Lo diamo per scontato, assumiamo per vero e inconfutabile che oggi è un giorno più di ieri come dopodomani saranno due giorni a partire da oggi. Come diamo anche per scontato che nel tempo di una clessidra, un uovo immerso nell’acqua bollente si cuocia.
Le notizie che il tempo scorre sempre e solo nella direzione in cui aumenta e che una volta cotto un uovo non possa mai tornare crudo, non ci scandalizzano affatto.
Da quando Albert Einstein dimostrò che il tempo è in effetti una quarta dimensione di un insieme più ampio chiamato spaziotempo, è perfettamente naturale aspettarsi che lo stesso dinamismo valga anche per le tre restanti dimensioni spaziali.
E in effetti anche le distanze tra gli oggetti nel nostro universo aumentano inesorabilmente: è quella che chiamiamo Espansione Universale, scoperta da Hubble negli anni 20 del XX secolo riguardo all’allontanamento reciproco delle galassie [cite]http://ilpoliedrico.com/2012/10/la-costante-di-hubble-e-i-modelli-cosmologici.html[/cite]. Il valore oggi più accreditato per la Costante di Hubble $H_0$  è di 74,3 km/s per megaparsec, ossia ogni secondo un megaparsec è più grande del secondo precedente di 74,3 chilometri. Se vi sembra un numero gigantesco, considerate che ogni secondo un metro di spazio si allunga di  2,407 attometri 2. Pensate che perché un metro si allunghi tanto da includere un atomo di idrogeno (50 picometri 3) occorrono più di 20 milioni di anni.
Esso cresce continuamente, ma non per questo significa che si espanda dentro qualcosa, aumenta le sue dimensioni stirando e appiattendo lo spazio precedente, continuando ancora oggi l’esperienza della sua formazione 4.
Come vedete, lo spazio si comporta esattamente come il tempo. Anche la direzione è la stessa. Il tempo, lo spazio e la direzione dell’entropia puntano esattamente nella stessa direzione, forse l’unica direzione che permette la vita nell’Universo e la stessa che vi garantisce un uovo alla coque nel tempo di una clessidra. 

  • Dov’è il centro dell’Universo?

Credit: il Poliedrico

Credit: il Poliedrico

Semplice, nell’osservatore; il che equivale che lui e solo lui è nella condizione privilegiata di esserlo o che lo è ogni punto dell’Universo.
Un osservatore vedrà la stessa cosa ovunque egli sia e in qualsiasi epoca: il raggio d’azione dei suoi sensi è legato all’età stessa dell’Universo, il tempo di Hubble 5.
Pertanto che si trovi qui ora, o sulla galassia più lontana nel passato, nel presente o nel futuro, avrà il privilegio di percepirsi sempre al centro dell’Universo. Per quanto ai nostri sensi appaia incredibile un vero centro geometrico l’Universo non ce l’ha!

  • Cosa c’era prima del Big Bang?

Mappa della radiazione cosmica di fondo dell?Universo. È il più antico segnale che potremmo mai ricevere.

Mappa della radiazione cosmica di fondo dell?Universo. È il più antico segnale che potremmo mai ricevere.

Questa è la domanda delle domande. Forse è la più diffusa e difficile a cui rispondere, e forse perché non c’è veramente una risposta.
Potrei dire che la scienza ufficiale non può dare una risposta perché essa è limitata dalla fisicità dell’universo. Le leggi fisiche finora conosciute ci consentono di  esplorare fino a pochi istanti prima di quel fenomeno, chiamato Big Bang, che supponiamo abbia originato il nostro universo. Per andare ancora oltre quei primissimi istanti occorre una legge della gravità quantistica, che sappia cioè unire la forma della gravità relativistica classica con i principi della meccanica quantistica.
Purtroppo, pur intuendone molti aspetti esteriori, una legge simile ancora non è stata trovata [cite]http://ilpoliedrico.com/2014/04/ricerca-santo-graal-fisica-gravita-quantistica.html[/cite].
Innanzitutto occorre precisare che nessuno mai potrà vedere direttamente il Big Bang. L’evento più vicino al Big Bang che è possibile vedere direttamente è la Radiazione Cosmica di Fondo a microonde che altro non è che il fronte di quando l’Universo divenne abbastanza grande e freddo da permettere alla materia e l’energia di disaccoppiarsi quando l’Universo aveva appena 380 000 anni.
Si suppone che i fotoni generati dal Big Bang possano aver lasciato la loro orma su questo muro sotto forma di radiazione altamente polarizzata, ed è quello che si sta cercando di capire attraverso una mappatura estremamente accurata con vari strumenti sia in orbita che sulla Terra [cite]http://ilpoliedrico.com/2014/04/echi-lontano-passato-novita.html[/cite] [cite]http://ilpoliedrico.com/2014/06/echi-lontano-passato-incertezze.html[/cite].

Before the Big Bang Copyrigh: Iole Vaccaro Emozioni Grafiche in Movimento

Before the Big Bang
Copyrigh: Iole Vaccaro
Emozioni Grafiche in Movimento

Ma di tutto quello che accadde tra il Big Bang e il disaccoppiamento materia-energia è frutto di simulazioni matematiche basate sulle leggi fisiche conosciute e applicate a quelle condizioni particolari. Questo metodo consente di risalire a condizioni fisiche esistenti fino a poche frazioni di secondo a partire dal Big Bang. Ovviamente queste condizioni particolari della materia-energia nell’Universo primordiale sono state verificate con esperimenti della Fisica delle Alte Energie, quindi anche se poi alla luce di nuove scoperte scientifiche dovessero rivelarsi errate, è importante ricordare che comunque non sono semplici ipotesi campate in aria. Risolvere l’altra frazione di secondo è tutta un’altra storia; come ho detto occorre una nuova fisica che contempli sia la gravità classica che la meccanica quantistica in un’unica, nuova, struttura.
Di conseguenza non sappiamo nulla dell’istante in cui è nato l’Universo, sappiamo solo quello che è successo in seguito. La scienza si ferma qui, questo è il limite ultimo in cui uno scienziato può rispondere con sicurezza. Il resto sono solo speculazioni e congetture che esulano dalla scienza ed entrano nel campo della metafisica.

 Dopo questa importante premessa sui limiti dell’attuale scienza potremmo anche avviarci lungo un cammino per esplorare le varie risposte date da cosmologi, fisici e teologi che vanno da un ribollio caotico di nuovi universi in perenne nascita con leggi fisiche e dimensioni diverse fino al disegno intelligente di qualcosa che si pone fuori dalla creazione che di cui ne è anzi opera.
A questo punto il cammino per scoprire cosa c’era prima del Big Bang si fa incerto, senza l’appoggio di un bastone affidabile come la scienza, quale percorso scegliere? 


Note:

Come ti calcolo le proprietà di un esopianeta, le altre proprietà

 Finisce qui il lungo capitolo “Come ti calcolo le proprietà di un esopianeta“. Mi sono divertito un sacco a scriverlo come spero voi vi siate divertiti a leggerlo. È stato un argomento abbastanza impegnativo da trattare, dimostrare come un tenue affievolimento delle luce di una stella può sussurrare molte cose all’orecchio, o meglio all’occhio, di chi sa ascoltare e leggere il grande libro del cosmo. I metodi, le formule e i calcoli  da me illustrati non sono e non pretendono di essere esaustivi e precisi, ma vogliono essere semplicemente di stimolo alla curiosità del lettore. In fondo questo è lo scopo di questo Blog.

[latexpage]

exoplanetaUna volta scoperte le principali proprietà fisiche di un esopianeta, ossia raggio del pianeta, orbita, massa e temperatura di equilibrio, è possibile, in linea teorica risalire alle altre, come densità (questa è facile) struttura interna e in linea di massima pure la struttura dell’atmosfera, ovvero quali gas possono comporla dal punto di vista teorico.
Ovviamente non sarà mai possibile ottenere un quadro attendibile per questi ultimi due punti partendo dalla semplice osservazione dei transiti orbitali e basta, ma perlomeno così si ha un’indicazione su come proseguire nella ricerca.

Nel primo articolo [cite]http://ilpoliedrico.com/2014/07/come-ti-calcolo-le-proprieta-di-un-esopianeta-prima-parte.html[/cite] fu dimostrato come attorno ad una stella K7 orbitasse un pianeta grande quasi il doppio di Nettuno (42 000 km) a soli 44,6 milioni di chilometri dalla stella. e una temperatura di equilibrio di 263 °K.
La massa, finora indeterminata per via del metodo di rilevamento, viene infine stimata intorno alle 9,5 x 1026 kg,circa 159 volte la Terra.

La densità

Il calcolo della densità non è poi così difficile. Basta dividere la massa per il volume, ovvero:
\begin{equation}\label{eq:Densità}
\delta_{p}=\frac{m_{p}}{\frac{4\pi {r_{p}}^3}{3}}
\end{equation}

\[\rightarrow\]
\begin{equation}
\frac{9,5\times 10^{26}\; kg}{3,1 \times 10^{23} \; m^{3}}=3,06 \times 10^{3}\;
kg/m^{3}\end{equation}

La velocità di fuga e la gravità superficiale

Anche se è nota al grande pubblico soprattutto per la sua importanza nella balistica e nella missilistica, in realtà essa domina la struttura e la composizione delle atmosfere planetarie assieme al parametro della temperatura di equilibrio [cite]http://ilpoliedrico.com/2013/05/lo-spessore-delle-atmosfere-planetarie.html[/cite]. La velocità di fuga si ha quando l’energia cinetica del corpo e il modulo della sua energia potenziale gravitazionale si equivalgono, e questo vale per un missile, un sasso, un atomo e un fotone, nel caso di un buco nero. Per un qualsiasi corpo, pianeta o stella che sia non è difficile da stabilire, basta conoscere la sua massa e il raggio.

\begin{equation}\label{eq:Velocità di fuga}
v_{f}=\sqrt{\frac{2GM}{R}}
\end{equation}

\[\rightarrow\]
\begin{equation}
\sqrt{\frac{2 \cdot 9,5\times 10^{26}\; kg \cdot \left ( 6,67 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2}\right ) }{4,2\times10^7 \;m}}= 54,930\; km/s
\end{equation}
Lo stesso discorso vale anche per la gravità superficiale:
\begin{equation}\label{eq:Gravità superficiale}
g_{s}=G \frac{M}{R^2}
\end{equation}
\[\rightarrow\]
\begin{equation}
\left ( 6,67 \cdot 10^{-11} \frac{m^3}{kg \cdot s^2}\right ) \cdot \frac{9,5\times 10^{26}\; kg}{\left ( 4,2\times10^7 \;m\right )^2} = 35,921 \; m/s^2
\end{equation}

Così si scopre che questo ipotetico esopianeta ha una densità simile alla Luna ma con una velocità di fuga che  è di poco inferiore a quella di Giove mentre la gravità alla superficie è una volta e mezza quella del ben noto gigante gassoso. Probabilmente è un grande mondo di silicati e un nucleo ferroso avvolto da una densa atmosfera. Quasi altrettanto certamente non è un buon posto per cercarvi forme di vita di tipo terrestre.

La Settimana della Scienza e la Notte dei Ricercatori 2014

manifesto-dpi-100_1Nonostante il continuo calo degli investimenti nella scuola e nella ricerca pubblica attuato dai governi di ogni connotazione politica di questi ultimi anni in nome della sostenibilità finanziaria imposta dai vincoli europei e che pone ai ricercatori seri problemi  anche strutturali, la ricerca scientifica in Italia è ancora viva e pulsante. In aggiunta, lo spazio dedicato ad essa nel panorama mediatico italiano è alquanto scarso se non addirittura in molti casi deprimente, eppure i risultati scientifici italiani continuamente ottenuti nel panorama internazionale dimostrano la qualità, e spesso l’eccellenza, della ricerca italiana.

Nonostante tutte queste difficoltà I ricercatori italiani continuano a competere con gli altrettanto preparati ricercatori europei nei loro rispettivi campi d’interesse: fisica, matematica, medicina e biologia, tanto per citarne alcuni.

Proprio per sensibilizzare al massimo l’opinione pubblica su questi risultati è che da 9 anni viene organizzata la Settimana della Scienza (22 – 26 settembre) che terminerà con la Notte Europea dei Ricercatori (26 settembre). Tra le 5 manifestazioni italiane finanziate dalla  Commissione Europea questa, DREAMS, è risultata essere la prima classificata in Europa nell’ambito della Researcher’s Night con ben undici città coinvolte su tutto il territorio nazionale e partner scientifici tra i più autorevoli al mondo, ed è coordinata dall’Associazione Frascati Scienza. Il tema scelto per quest’anno  è la “Sostenibilità”, una parola semplice che racchiude mille problemi urgenti che richiedono di essere risolti nei prossimi anni.

  • Sostenibilità alimentare ad esempio. Questo è uno dei prossimi problemi più urgenti da risolvere. Il Riscaldamento Globale erode la qualità e la quantità dello spazio legato all’approvvigionamento  alimentare globale, procurando un argomento particolarmente sensibile per i suoi risvolti socio-economici per gli anni a venire. Strumenti di monitoraggio dallo spazio, nuovi sviluppi nelle tecnologie genetiche e agro-alimentari etc. saranno importanti per la soluzione di questo problema.
  • Sostenibilità energetica. Anche qui le crescenti difficoltà legate ai combustibili fossili richiedono uno sforzo di ricerca non indifferente. Altri schemi , altre politiche energetiche e altri modi di vivere e pensare l’energia è un’altra sfida in linea col problema della sostenibilità globale.

Questi sono solo due banali esempi  sulla complessità del tema scelto per quest’anno e che i ricercatori italiani ed europei saranno chiamati a d affrontare nei prossimi anni. Nelle undici città  durante tutta la settimana e nella nottata del 26 settembre verranno mostrati al pubblico quello che intanto è stato raggiunto finora attraverso dibattiti, convegni e mostre sia per il pubblico adulto sia per i bambini.

Maggiori informazioni sull’evento e i luoghi che ospiteranno le manifestazioni sono disponibili su
http://www.frascatiscienza.it/pagine/notte-europea-dei-ricercatori-2014

A caccia di mostri: nascita delle galassie più massicce dell’Universo.

La settimana scorsa, giovedì 21 agosto 2014, il Prof. Danilo Marchesini della Tuft University di Boston (potete vedere la cartina qui in basso) è stato ospite presso l’Università di Siena per una conferenza come dal titolo.  Non perdo tempo e vi lascio subito a questa visione.
Ringrazio l’Università di Siena e la persona di Alessandro Marchini per aver reso pubblico  il video dell’incontro.

[video_lightbox_youtube video_id=”dv-j6E-p-hE” width=”640″ height=”480″ auto_thumb=”1″]
astronomy_pod

Congiunzione Venere – Giove del 18 agosto 2014

Muovi il puntatore sulla figura per vedere le etichette.
Credit: Il Poliedrico

Finalmente la Congiunzione forse più attesa di quest’anno sono riuscito a vederla. Ammetto che è stata una levataccia, alle 04:45, ma ne è valsa la pena!
Purtroppo ho il telescopio guasto, probabilmente è solo un problema di alimentazione che risolverò nei prossimi giorni. La foto qui sopra infatti è stata scattata senza inseguimento, manovrando il tubo alla vecchia maniera come facevano gli astronomi del passato. Quindi anche se seccante, non è stata un’esperienza poi tanto male.
Qui sotto ci sono altre foto di stamani, divertitevi!

IMG_7327b Venus and Jupiter Jupiter and Venus

Come ti calcolo le proprietà di un esopianeta, la massa (metodo radiale)

 

metodo dopplerI metodi per l’individuazione degli esopianeti sono sostanzialmente due: il metodo dei transiti, cioè quello analizzato fin qui nelle scorse puntate e usato dal celebre telescopio spaziale Kepler, e il metodo delle velocità radiali, che consiste nell’individuare lievi spostamenti doppler periodici nelle linee spettrali di una stella provocati dalla presenza di uno o più pianeti in orbita.
I vantaggi di questo metodo sono che attraverso il metodo delle velocità radiali è possibile avere una stima molto più precisa delle velocità orbitali, tant’è che è – per ora – l’unico metodo abbastanza affidabile che consente di ottenere una stima della massa di un esopianeta.
Come il precedente, anche questo approccio per trovare la massa di un pianeta extrasolare è legato alla legge fisica chiamata la conservazione della quantità di moto 1. La legge di conservazione del momento dice che in ogni sistema chiuso (cioè, un sistema in cui le forze esterne sono trascurabili), la quantità di moto totale di tutti gli oggetti del sistema non può cambiare. Pertanto, quando gli oggetti all’interno di un sistema chiuso interagiscono uno con l’altro, la quantità di moto di un singolo oggetto può anche cambiare, ma la quantità di moto totale di tutti gli oggetti all’interno del sistema deve rimanere costante.
Per questo si può scrivere legittimamente la relazione \(p_{\bigstar} = p_{p}\) 2,ovvero:
\begin{equation}
m_{\bigstar}v_{\bigstar}=m_{p}v_{p}
\end{equation}
Da qui ne consegue che si può scrivere anche:
\begin{equation}
m_{p}= \frac{m_{\bigstar}v_{\bigstar}}{v_{p}}
\end{equation}

La massa della stella si ottiene come al solito dalla relazione temperatura/luminosità ricavabile dal diagramma di Hertzsprung-Russell che consente di risalire alla massa della stella 3.
Purtroppo l’equazione qui sopra chiede la velocità orbitale del pianeta mentre attraverso la periodicità dello spostamento spettrale (V. figura in alto) restituisce il periodo orbitale del pianeta \(P_{p}\) attorno al centro di massa del sistema. Ma semplificando la Terza legge di Keplero per la Legge di Gravitazione di Newton si può scrivere che:
\begin{equation}
P_{p}^2=\frac{a_{p}^3}{M_{\bigstar}}
\end{equation}
dove appunto \(a_{p}\) è il semiasse maggiore dell’orbita del pianeta. Assumendo come nel caso scorso che sia un’orbita perfettamente circolare, si può dire anche che \(a_{p}\) è uguale al raggio dell’orbita, pertanto la circonferenza orbitale è pari a \(a_{p}\cdot 2\pi\), mentre la velocità orbitale non è altro che questa distanza diviso per il suo periodo \(P_{p}\):
\begin{equation}
v_{p}=\frac{2\pi a_{p}}{P_{p}}
\end{equation}
ecco la nostra velocità orbitale del pianeta e di conseguenza la sua massa!

equazione


Note:

 

Nubi mesoseriche polari e riscaldamento globale

[latexpage]

cloudsclouds

Nubi nottilucenti in streaming attraverso il cielo a Utrecht, Paesi Bassi il 16 giugno 2009 Credit: Robert Wielinga

Non è la prima volta che mi occupo delle nubi mesosferiche polari, più comunemente note come nubi nottilucenti [cite]http://ilpoliedrico.com/2011/11/le-nubi-nottilucenti-e-il-buco-nellozono-artico.html[/cite].
Il loro spettrale aspetto è dovuto alla particolare struttura delle particelle di ghiaccio d’acqua che le costituiscono: particelle che vanno dai 20 ai 70 miliardesimi di metro (nanometri), un decimo delle lunghezze d’onda visibili, che si formano quando la temperatura scende a -130° Celsius. A quella scala dimensionale lo scattering della luce solare diffonde infatti soltanto la luce blu, ed è quello appunto il colore con cui le vediamo.

Le prime osservazioni sicure di queste nubi particolari sono successive alla terribile eruzione del vulcano Krakatoa del 1883, tant’è che all’inizio si pensò che queste nubi mesosferiche fossero una conseguenza diretta della notevole esplosione e in genere delle molteplici attività vulcaniche del pianeta.
Oggi non è più così, o almeno non  lo è in parte. Lo spazio intorno alla Terra non è veramente vuoto. E in realtà polveroso, risultato della sublimazione delle comete nei pressi del Sole e dei detriti asteroidali non più grandi della di un chicco di riso . I risultati di questi fiumi di polvere li vediamo in queste ore d’estate guardando il cielo: lo sciame delle Perseidi  è uno di questi.

1-rarenoctiluc

 “Strane nuvole luminose non aurorali a NW” Estratto di un rapporto meteorologico dell’astronomo Romney Robinson’s riguardante  l’osservazione un fenomeno simile alle nubi mesosferiche polari del 1 e 4  maggio 1850.

Quando uno di questi granelli di polvere cade sotto l’influenza gravitazionale della Terra e raggiunge la quota tra i 90 e gli 80 chilometri si incendia e si disintegra in pulviscolo ancora più piccolo. Noi quaggiù vediamo la scia di ionizzazione dell’aria del granello che sublima e lo chiamiamo stella cadente.

Questo pulviscolo impiega poi mesi, ed addirittura anni, per depositarsi finalmente al suolo; si calcola che ogni giorno cadano sulla Terra così dalle 5 alle 300 tonnellate di materiale cosmico ogni giorno!
Ed è proprio questo pulviscolo che rimane in sospensione tra gli 80 e i 90 chilometra di quota (la mesosfera) a fungere da seme per i cristalli di ghiaccio d’acqua a quelle quote.

Appurata l’origine dei semi e la composizione delle nubi, resta da capire come il vapore acqueo arrivi fino a quote mesosferiche, un luogo dell’atmosfera estremamente freddo e asciutto è ancora un mistero, o quasi. Quello che è ormai appare quasi sicuro è che all’aumentare della temperatura troposferica corrisponde un aumento della concentrazione del vapore acqueo nella mesosfera. Una conferma indiretta arriva dalla frequenza delle osservazioni: Agli inizi del XX secolo per osservare questo straordinario fenomeno  accorreva recarsi nei pressi dei circoli polari, oggi stanno diventando abbastanza comuni anche a latitudini molto più basse, le nubi mesosferiche sono state osservate da paesi come la Germania, il Colorado e perfino dall’Italia! Anche il periodo di osservazione di questo peculiare tipo di nubi si è esteso dai primi giorni di maggio delle prime osservazioni fino al giugno e luglio di oggi.

graficoIl meccanismo che porta il vapore acqueo nella mesosfera è in gran parte sconosciuto, ma il principale indiziato è il metano [cite]10.1007/978-94-015-9343-4_1[/cite].
Il metano sulla Terra è praticamente tutto di origine biologica, di cui la maggior parte sono legate alle attività umane. Dai carotaggi artici è dimostrato che la concentrazione di metano atmosferico negli ultimi 450 mila anni si è mantenuto pressoché costante tra i 450 e i 700 ppbv (Parts Per Billion by Volume – parti per miliardo in volume) raggiunti prima dell’Era Industriale [cite]http://www.ncbi.nlm.nih.gov/pubmed/23038470[/cite] fino agli oltre 1700 ppbv di oggi.
Attualmente vengono dispersi circa 66 teragrammi (66 milioni di tonnellate) di metano all’anno nell’atmosfera contribuendo così in modo significativo al riscaldamento globale. E più la tropospera (la parte dell’atmosfera in cui viviamo) si riscalda, che questa diventa umida per effetto dell’evaporazione degli oceani e si espande, portando il vapore acqueo nella troposfera e da qui anche nella mesosfera, accompagnata dal metano.
In quell’area il vapore acqueo viene scisso in ossidrile ($\cdot OH$) che attacca e distrugge lo scudo d’ozono che ci protegge dalle radiazioni ultraviolette. Contemporaneamente l’ossigeno biatomico reso disponibile dalla distruzione dell’ozono si combina col metano restituendo ancora acqua e anidride carbonica: ${CH_4}_{(g)}+{2O_2}_{(g)} \rightarrow {CO_2}_{(g)}+{H_2O}_{(g)}$. Per il dettaglio delle trasformazioni chimiche rimando ai documenti citati in fondo alla pagina.

Come ho illustrato anche nel mio precedente articolo sullo stesso argomento, tutto questo è preoccupante. Fatevi un giro su Accuweather.com e guardatevi le temperature estive della Siberia. Le temperature insolitamente alte fino  a qualche decennio fa stanno diventando ormai la norma. Il permafrost siberiano che contiene miliardi di tonnellate di metano intrappolato nel ghiaccio si sta sempre più rapidamente sciogliendo da un anno all’altro [cite]http://www.greenreport.it/news/clima/siberia-scoperto-gigantesco-buco-nel-permafrost-non-finire-gallery/[/cite].
Le nubi mesosferiche polari potrebbero essere l’ennesimo campanello d’allarme che la natura ci mostra per avvertirci che ormai quaggiù ci sono sempre più cose che non vanno affatto bene riguardo la sostenibilità del pianeta. La vita sulla Terra certamente non scomparirà e tra qualche migliaio di anni la natura avrà trovato qualche altro equilibrio ecologico adatto ad essa. Peccato che probabilmente non ci sarà posto per il folle, predatore genere umano.


 

Come ti calcolo le proprietà di un esopianeta, la massa

[latexpage]

Nella prima parte ho dimostrato come si possono ottenere con dei semplici calcoli alcune proprietà di un ipotetico pianeta in orbita ad una stella remota. La parte più difficile è però calcolare la massa dell’esopianeta, una sfida difficile ma ricca di soddisfazioni.

Credit: Il Poliedrico.

Credit: Il Poliedrico.

La Seconda Legge del Moto di Newton e la Legge di Gravitazione Universale mostrano che esiste un elegante rapporto tra il semiasse maggiore dell’orbita e il periodo di rivoluzione di un qualsiasi pianeta.
Di conseguenza, conoscendo esattamente il periodo orbitale e la distanza che divide un pianeta dal suo centro di massa con la stella a cui appartiene è possibile estrapolarne la massa:
\begin{equation}
\frac{P^2}{a^3}=\frac{4\pi^2}{G(M_{\bigstar} +M_{p})}
\end{equation}

Pertanto osservando le leggi universali del moto e della gravitazione di Newton potrebbe sembrare che sia abbastanza semplice estrapolare la massa di un esopianeta 1; quello che occorre è la conoscenza più accurata possibile degli elementi orbitali dell’esopianeta.
La distanza prospettica tra la proiezione della corda di transito e la corda del massimo transito è descritta matematicamente come $b=a \hspace{2} cos(i)$, dove $a$ è il raggio dell’orbita del pianeta, assumendo per assurdo che l’orbita dell’esopianeta osservato sia perfettamente circolare ($\varepsilon =0$ e velocità orbitale costante). Osservando la figura qui sotto si nota che il cateto $l$ opposto all’ipotenusa $R_{\bigstar}+R_{p}$ e pari alla metà del percorso del pianeta davanti alla sua stella, lo si può scrivere come :
\begin{equation}
l=\sqrt{\left( R_{\bigstar} + R_{p}\right)^2 – b^2}
\end{equation}.

Pertanto il percorso osservato del’esopianeta (A -> B) sul disco stellare è pari a 2$l$.
Osservando la figura all’inizio è evidente che l’esopianeta mentre transita davanti alla stella muovendosi tra A a  B  compie un angolo (espresso in radianti) $\alpha$ dove il centro è il centro di massa del sistema 2.
Così si ha per il triangolo $\overline{AB}$ e il centro di massa, la durata visibile del transito:
\begin{equation}
sin \left( \frac{\alpha}{2}\right)=\frac{l}{a}
\end{equation}\[\rightarrow\]\begin{equation}
D_{transito}= P\frac{\alpha}{2\pi}=\frac{P}{\pi}sin^{-1} \left(\frac{l}{a}\right)=\frac{P}{\pi}sin^{-1} \left(\frac{\sqrt{\left( R_{\bigstar} + R_{p}\right)^2 – b^2 }}{a}\right)
\end{equation}

Per procedere oltre, occorre stimare la durata massima del transito, come se si osservasse il piano orbitale  proprio di taglio, quando il pianeta cioè attraversa la stella sul suo equatore. Infatti la durata del transito osservato è generalmente minore rispetto a quella massima possibile che si avrebbe solo quando il piano planetario è parallelo all’osservatore, data la casualità dei piani planetari delle altre stelle rispetto all’osservatore.

[virtual_slide_box id=”5″]

Come è possibile osservare nella figura qui sopra la proiezione del pianeta sul disco stellare è falsata dall’angolo $i$, inteso come l’angolo compreso tra la linea di vista e il piano orbitale effettivo dell’esopianeta ($i$=90° se il piano orbitale è sulla stessa linea di vista). Conoscere l’ampiezza dell’angolo $i$ restituisce l’idea di come è pertanto posizionato nello spazio il sistema planetario extrasolare rispetto all’osservatore. Quindi in realtà la durata del transito osservata sarà pari a $D_{transito}= D_{max} \cdot sin(i)$. Ma non solo, come è possibile osservare nella simulazione qui a fianco,  lo sviluppo del transito su una corda diversa dalla corda massima (il diametro) influenza anche la curva di transito osservata, accorciando il periodo del picco minimo osservabile e stirando i periodi parziali [cite]http://arxiv.org/abs/astro-ph/0210099[/cite].
Adesso la durata massima del transito si può descrivere matematicamente come:
\begin{equation}
\frac{P\frac{\alpha}{2\pi}}{sin \left (i \right)}
\end{equation}

perché la lunghezza della corda di transito è falsata (e quindi minore) rispetto alla corda massima disponibile dal $sin(i)$.
Quindi applicando la legge dell’anno siderale di Gauss  si scopre che:
\begin{equation}
\frac{2\pi}{k}=D_{max}\frac{2\pi}{\alpha}
\end{equation}\[\rightarrow
\]
\begin{equation}
\alpha / D_{max}=k
\end{equation}

Il periodo orbitale rilevato dalla frequenza dei transiti restituisce la durata dell’anno siderale reale, ovvero quello che è prodotto con il contributo delle due masse, quella stellare e quella planetaria. Viceversa l’anno gaussiano del pianeta tiene conto solo della massa della stella. La differenza tra i due diversi periodi restituisce il contributo dovuto alla sola massa del pianeta.

[fancybox url=”https://www.google.com/maps/place/Telescopio+Nazionale+Galileo/@28.754061,-17.889222,15z/data=!4m5!3m4!1s0x0:0x31eced4f49d5d60a!8m2!3d28.7540605!4d-17.8892225″ caption=”Il Telescopio nazionale Galileo”]
Il Telescopio nazionale Galileo – Credit: Sabrina Masiero[/fancybox]

La tecnologia osservativa attuale basata sui transiti non è ancora così precisa da consentire di rilevare differenze così piccole 3. Diversa storia invece per l’analisi spettrografica che consente con molta maggiore accuratezza di risolvere le velocità relative del sistema esoplanetario; per ora rimane infatti il solo modo per stabilire con sufficiente approssimazione la massa di un pianeta extrasolare.
Per questo strumenti spettroscopici di grandissima risoluzione sono ospitati nei maggiori complessi astronomici del mondo. Due di questi, gli HARPS sono ospitati in strutture europee: l’HARPS è ospitato presso l’Osservatorio di La Silla, in Cile sul telescopio da 3,6 metri dell’ESO fin dal 2002. L’altro, l’HARPS-N, è stato montato nel 2012 sul Telescopio Nazionale Galileo, all’Osservatorio del Roque de Los Muchachos nell’isola di La Palma, alle Canarie.
Il metodo delle velocità radiali rilevate spettroscopicamente  è molto simile a quello che qui è descritto, solo che è molto più efficace grazie a questa nuova classe di spettroscopi ultra precisi a cui gli HARPS appartengono. Se adesso è possibile fare una stima della massa ad un esopianeta lo si deve ad essi.


Note:

L’intervista

Il 6 luglio scorso io e Sabrina Masiero, abbiamo partecipato come ospiti radiofonici in una trasmissione radio regionale 1. Sabrina è stata intervistata telefonicamente in diretta e ha illustrato il suo ruolo di divulgatrice presso l’Istituto Nazionale di Astrofisica dove ha curato le immagini per il  libro Astrokids, dedicato ai più piccoli ma utile anche ai grandi che per la primissima volta si avvicinano all’astronomia, e del suo lavoro a Las Palmas (Isole Canarie), dove ha sede il Telescopio Nazionale italiano Galileo (TNG) col medesimo ruolo. Nel mio piccolo invece, ho preferito intervenire attraverso domande e risposte lette in studio dai conduttori che qui ripropongo nella versione integrale, perché ho una pessima, bassa e incomprensibile voce.

La congiunzione astrale del 4 settembre 1970 ricostruita attraverso il software Stellarium. Questa congiunzione è  stata il motore di tutta la mia vita. E poi gli astronomi dicono che le stelle e i paneti non influenzano gli esseri umani:-P

La congiunzione astrale del 4 settembre 1970 ricostruita attraverso il software Stellarium.
Questo momento è stato il motore di tutta la mia vita.
E poi gli astronomi dicono che le stelle e i paneti non influenzano gli esseri umani 😛

Presentazione: Umberto Genovese, 48 anni, nel tempo libero si occupa di divulgazione scientifica principalmente attraverso i suoi due blog: il Poliedrico (http://ilpoliedrico.com), che spazia dalla fisica alla cosmologia, dalla planetologia ai suggerimenti per astrofili (nel blog è disponibile anche un abbastanza dettagliato calendario degli eventi astronomici più rilevanti) e Progetto Drake (http://drake.ilpoliedrico.com), nato per raccogliere quante più informazioni, articoli o notizie riguardanti le famose variabili frazionarie che compongono la celebre Equazione di Drake e gestito insieme alla Dott.sa Sabrina Masiero dell’Università di Padova. Il Progetto Drake fu presentato nell’Edizione Unificata dei Carnevali scientifici (di Chimica e di Fisica) in occasione del 4° Congresso IAA (International Academy of Astronautics) “Cercando tracce di vita nell’Universo”, tenutosi a San Marino dal 25 al 28 settembre 2012. In più ha scritto qualche articolo per la rivista di astronomia Coelum (alcuni di questi sono ancora da pubblicare).

  • Domanda: Com’è nata la tua passione per l’astronomia?
    Umby: Per me fu illuminante la congiuzione Giove-Venere-Luna del 4/9/1970. Avevo solo 4 anni ma il ricordo di quel disegno nel cielo è ancora vivido quanto lo avessi visto poc’anzi. Da allora ho voluto capire di più su cosa fossero quelle luci sospese nel cielo. E credo di essere arrivato a un buon punto.
  • Domanda: Qual è la tua ricerca più importante?
    Umby: Credo che sia stato quando cercavo di interpretare (a soli 14-15 anni) l’influenza dell’attività solare sulla ionosfera analizzando le trasmissioni ad onde corte. Purtroppo i miei dati erano insufficienti per avere un fondamento statisticamente valido; ma perlomeno c’ho provato. 
  • Domanda: Qual è stato il fenomeno celeste che più ti ha impressionato?
    Umby: Quella congiunzione del ’70 mi ha aperto alla scienza e l’astronomia. Se dovessi scegliere direi questa.
  • Domanda: Cosa ne pensi della vita extraterrestre?
    Umby: Tralasciando le solite banalità di rito, l’Universo è troppo grande per un mondo solo ecc., penso che la vita sia una logica conseguenza del Big Bang.
    Tutte le costanti fisiche, dalla carica dell’elettrone alla massa del protone e così via, sono esattamente quelle che ci vogliono per avviare la nucleosintesi stellare. Mi spiego meglio; Il Big Bang ha prodotto sia materia che antimateria. Ma un fenomeno chiamato “Violazione della Simmetria CP”  ha permesso che una delle due avesse il sopravvento numerico sull’altra, permettendo a quella che oggi chiamiamo materia barionica di condensarsi in stelle e avviare così i processi di nucleosintesi che hanno poi prodotto gli elementi chimici più pesanti dell’idrogeno di cui noi tutti, il tavolo, le pietre nel nostro giardino e mondi lontanissimi come Kepler 22b, siamo fatti. Queste stelle primordiali (che gli astronomi chiamano di Popolazione II) esplosero dopo alcuni milioni di anni come supernovae e disseminarono il loro prezioso contenuto nel Cosmo. Da questi “scarti stellari” hanno poi avuto origine i pianeti, comete e così via.
    Alcuni di quegli elementi sono estremamente reattivi, come il carbonio, che dà origine a catene molecolari estremamente complesse appena si verificano particolari condizioni chimico fisiche; cosa che quasi sicuramente avvenne sulla Terra circa 3,5 miliardi di anni fa. Quelle catene sono gli aminoacidi, i mattoni fondamentali per la vita a base di carbonio, come la conosciamo noi sulla Terra. Condizioni analoghe possono essersi verificate un po’ ovunque nell’Universo, e questo lo si sta cercando di scoprire con la ricerca degli esopianeti.
    Pertanto credo che la vita sia piuttosto diffusa nell’Universo.

•  Domanda: Allora l’Universo secondo te sarebbe pieno di extraterrestri come noi?
Umby: È presto ancora per dirlo.
Per quanto riguarda la vita senziente, come l’uomo sulla Terra tanto per capirsi, credo che comunque sia abbastanza rara. Sulla Terra la comparsa dell’Homo Sapiens è il frutto di diverse estinzioni di massa e del concatenarsi di eventi locali e condizioni particolari che credo sia piuttosto improbabile si replichino così su altri mondi. Se altrove la vita intelligente è comparsa, deve avere una sua storia unica che poi l’ha plasmata anche nello sviluppo della civiltà.
Nel bacino del Mediterraneo e nel vicino Oriente si è passati 10000 anni fa dal concetto del tempo ciclico (fasi lunari, stagioni, maree, financo al ciclo mestruale femminile) al concetto di tempo lineare, ossia ad un inizio e una fine di tutto. Questo concetto, tutt’altro che banale, è stata la spinta che poi ha portato alla nascita delle grandi civiltà del passato e infine allo sviluppo della nostra tecnologia. Nel frattempo altri gruppi di umani che erano emigrati nelle Americhe e poi in Oceania, hanno seguito altri percorsi sociali. Le attuali civiltà degli Indios sudamericani, ad esempio, sfruttano quello che ricevono dalla Foresta Amazzonica; bravissimi a sfruttare le immense risorse locali, il loro sviluppo non è andato oltre a quello dei cacciatori nomadi dell’Età della Pietra che arrivarono lì per primi.
Quindi questo deve farci riflettere quanto sia difficile lo sviluppo di una civiltà in grado di compiere i viaggi spaziali – anche locali – come noi.

  • Domanda: Pensi che nei prossimi anni arriverà una scoperta significativa in merito?
    Umby: Anche scoprire che per assurdo siamo soli in questa parte dell’Universo, dovrebbe spingerci a capire l’unicità della specie umana come frutto importante dell’Universo – io considero la nostra specie come una infinitesima parte dell’Universo che prende coscienza di sé stesso e che si interroga su cosa “Lui” sia – e la fragilità di tutto l’ecosistema che la sostiene. E un tesoro così unico in questa parte di Universo va curato, difeso e custodito più di qualsiasi altra ricchezza materiale e immateriale che ci siamo finora inventati.
  • Domanda: Potrà l’umanità un giorno colonizzare Marte?
    Umby: Penso che questo sia possibile già con le tecnologie attuali o sviluppabili nel futuro molto prossimo.
    L’unico appunto che mi va di fare su questo argomento è che non credo che sarà mai possibile terraformare Marte e che quindi i futuri Coloni Marziani dovranno vivere costantemente dentro a strutture artificiali e a città sotterranee. Marte è troppo piccolo per trattenere una qualsiasi atmosfera complessa (tant’è che la maggior parte della sua la perse almeno 3 miliardi di anni fa) e non ha un campo magnetico sufficiente a schermare le radiazioni cosmiche; mentre gli ultravioletti solari senza un adeguato strato di ozono troposferico sarebbero per noi dannosi.
  • Domanda: Cosa ne pensi degli Universi Paralleli?
    Umby: Gli universi paralleli sono una conseguenza diretta di molte teorie cosmologiche. Ancora una teoria cosmologica definitiva non la conosciamo, quindi gli universi paralleli per ora rimangono solo un interessante esercizio matematico. E se anche esistessero avrebbero probabilmente leggi fisiche e dimensioni diverse dalle nostre che dubito potremmo mai comunicare con loro.
  • Domanda: Quali sono i vantaggi e le ricadute economiche della ricerca astronomica?
    Umby: La tecnologia astronomica ha permesso di testare e sviluppare le più raffinate tecnologie di precisione conosciute. La ricerca aerospaziale ha permesso lo sviluppo di materiali più leggeri e resistenti.
    Materiali come la fibra di carbonio, alcuni tipi di acciaio ad alta resistenza, leghe e fibre plastiche che oramai sono diventate di uso comune furono sviluppate per le missioni Gemini e  Apollo.
    Tecnologie come la telemedicina, i satelliti di comunicazione e GPS non sarebbero esistiti senza l’interesse per i fenomeni astronomici e l’astronomia che ci hanno fatto scoprire le leggi fisiche della Meccanica Celeste, la Relatività e la Meccanica Quantistica.
    I “nasi elettronici” che controllano le nostre case da incendi e perdite di gas sono nati per prevenire disastri nelle missioni spaziali, il cui motore è la curiosità innata dell’essere umano di avvicinarsi alle stelle.
    I CCD per le foto da dispositivi cellulari e fotocamere, le immagini ad alta risoluzione che apprezziamo in uno show televisivo, devono il loro concreto sviluppa alle necessità di possedere sensori ad alta risoluzione in campo astronomico.
    Gli scanner biometrici come la Risonanza Magnetica non esisterebbero senza le tecnologie di interferometria sviluppate per i radiotelescopi.
    Mi fermo qui ma potrei andare avanti per delle ore.