Cavalcando la luce

 

Riding Light from Alphonse Swinehart on Vimeo

Le scale cosmiche sfuggono all’umana comprensione dove tutto è incredibilmente più grande. La sola età dell’Universo ci rende le dimensioni dell’universo osservabile:  260 mila miliardi di miliardi di chilometri di diametro. Anche la cosa più veloce in natura come la luce impiega 13,8 miliardi di anni per arrivare a noi dal confine ultimo che ci è concesso scorgere.
Il nostro piccolo, accogliente Gruppo Locale di galassie – una settantina in tutto – ha ben 10 milioni di anni luce di diametro, mentre la distanza che ci separa dalla galassia più prossima è di soli 2 milioni e mezzo anni luce, circa 23 miliardi di miliardi di chilometri.
Il diametro della nostra Via Lattea è di appena 100 mila anni luce, la stella a noi più vicina appena – si fa per dire – 4,3 anni luce e l’oggetto più lontano mai lanciato dagli esseri umani è la sonda spaziale Voyager 1 con oltre 19 miliardi e mezzo di chilometri (circa 36 ore e un quarto luce di distanza) sul groppone e viaggia nello spazio dal lontano settembre 1977.

Questi numeri tuttavia non rendono comunque bene l’idea delle dimensioni cosmiche quanto questa animazione di  che ha immaginato una corsa attraverso il Sistema Solare (si è fermato a Giove per restare entro l’ora) a cavallo di un fotone partendo dal Sole. Ogni secondo del film corrispondono al percorso di quasi 300 mila chilometri, più o meno quanti ne percorrerebbe mediamente un’auto in una decina di anni. 

Buona visione!

Fotografare il cielo: l’astroinseguitore

La fotografia di panorami stellari è indubbiamente molto affascinante. Ma l’ostacolo principale è il moto stellare che rende questo tipo di riprese un po’ più complicato del solito. Ma basta un pelino di fantasia e la rotazione terrestre non è più un problema.

[latexpage]

 

Credit: yorkastr.oorg.uk

Un semplice astroinseguitore.
Credit: yorkastro.org.uk

A quanto ho visto in rete, l’autocostruzione di astroinseguitori non pare essere molto in voga tra gli astrofili italiani, che magari si affidano a strumenti commerciali non esattamente poco costosi per soddisfare questa esigenza. Invece pare essere stata piuttosto di moda oltreoceano dove, soprattutto ai tempi delle pellicole e camere oscure,  gli astrofili svilupparono interessanti soluzioni tecniche.
Un astroinseguitore autocostruito, in inglese barn door tracker, noto anche come  Haig o Scotch mount, è un dispositivo utilizzato per l’osservazione o la fotografia del cielo che consente di fare lunghe esposizioni del cielo notturno facendo ruotare lo strumento di ripresa alla stessa velocità della Terra, ma nella direzione opposta, in modo che il campo di vista rimanga sempre esattamente lo stesso durante tutta l’osservazione.
Si tratta di una semplice alternativa a cui collegare una macchina fotografica rispetto a una ben più costosa e ingombrante montatura equatoriale motorizzata. L’idea originale di questo strumento si deve probabilmente all’astronomo Donald Menzel di Harvard che fin dal 1930 organizzò spedizioni internazionali per osservare le eclissi solari. Un’eclissi solare totale non dura mai più di 7 minuti e per quel breve lasso di tempo la precisione di inseguimento di questo strumento è davvero eccellente. 
Adatto a qualsiasi latitudine, un astroinseguitore può portare la gamma più stravagante di strumenti di studio per un breve periodo (massimo un’ora per gli schemi più complessi a doppio braccio) senza il bisogno di contrappesi e ingombranti meccanismi. 
Nel mese di aprile 1975 la rivista americana Sky & Telescope pubblicò i disegni originali di un semplice astroinseguitore ideato da George Haig. Questo articolo scatenò l’interesse degli astrofili, i quali ben presto scoprirono e superarono i limiti di quel semplice progetto. Ulteriori versioni modificate di quello schema furono pubblicate nella stessa rivista nel mese di febbraio 1988 e nel giugno 2007.

 

(continua ….)

 

Sedimenti naturali e strutture fossili

Se vogliamo cercare testimonianze di vita passata sulla Terra non c’è che l’imbarazzo di dover scegliere dove guardare. Fossili di animali preistorici, piante e di più semplici forme di vita sono state trovate ovunque si sia guardato; dopotutto questo è un pianeta che la vita ha modellato a suo piacimento per almeno tre miliardi e mezzo di anni. È questo, un vastissimo spazio che sta al confine tra la geologia e la biologia, difficile da interpretare ma anche ricco di sorprese.

img_6764_a

Figura 1:
La Scala dei Turchi in comune di Realmonte (AG) in Sicilia. La bizzarra struttura naturale è composta da marna, una roccia sedimentaria di natura calcarea e argillosa, avente un caratteristico colore bianco puro. Credit: Il Poliedrico

Sezione trasversale di una roccia che mostra i sedimenti organici fossili al suo interno. Crfedit: : Nora Noffke, Daniel Christian, David Wacey, and Robert M. Hazen/Astrobiology

Figura 2:
Sezione trasversale di una roccia mostra i sedimenti organici fossili al suo interno.
Credit: : Nora Noffke, Daniel Christian, David Wacey, and Robert M. Hazen/Astrobiology

La vita nell’Archeano

Se voi avreste visitato la Terra durante l’Archeano, avreste trovato la Terra dominata da innumerevoli vulcani attivi. Il cielo vi sarebbe apparso di colore arancione a causa dell’alta concentrazione di metano nell’atmosfera mentre le acque degli oceani poco profondi che coprivano gran parte della superficie del pianeta avrebbero avuto una leggera sfumatura verde per i microrganismi che avevano appena imparato a vivere sui litorali, e che poi sarebbero diventati le stromatoliti e le tromboliti che vediamo oggi.
La Luna vi sarebbe apparsa molto più grande e le sue maree gigantesche, perché il satellite era allora molto più vicino. Il Sole era invece un po’ più piccolo e fresco, ma a riscaldare l’ambiente c’avrebbero pensato i vulcani e l’effetto serra…

All’inizio della storia sulla Terra era presente solo roccia magmatica, quella che costituisce ancora oggi almeno il 65% della crosta del pianeta. Adesso invece, almeno il 75% della superficie del pianeta è rivestito da uno strato sottilissimo di roccia di tipo sedimentario, cioè originato da sedimenti. Questi sedimenti sono prodotti dalla rimodellazione continua della crosta terrestre da parte dell’atmosfera e dell’idrosfera (processi abiotici), e dalla biosfera.
Esempi tipici di roccia sedimentaria sono le arenarie, le brecce e i conglomerati. La loro genesi è dovuta a processi di erosione, deposito e successivo  compattamento di frammenti più o meno grandi di altre rocce preesistenti.
Altri esempi di processi di sedimentazione sono quei sedimenti prodotti da soluzioni (tipicamente acqua) sature di minerali di carbonato (CO 3 2- ) come la calcite, l’aragonite e la dolomite.
Va da sé che i processi biologici dominanti sul nostro pianeta hanno lasciato ben poche strutture sedimentarie ancora non contaminate dalla loro presenza.

Le strutture sedimentarie legate alla biosfera sono prodotte da colonie di microrganismi che interagiscono con i sedimenti di origine naturale (abiotici) come quelli descritti prima. Queste colonie, molto spesso bentoniche 1, che possono essere composte da batteri, alghe, protozoi, archaea etc.,  si dispongono lungo il piano orizzontale 2 dando luogo a film microbici e altre sostanze polimeriche extracellulari (EPS) 3. Queste strutture poi danno origine alle microbialiti. L’ammassarsi di queste stuoie microbiche in presenza di carbonato produce quelle strutture sedimentarie note come stromatoliti [cite]http://www.geosociety.org/gsatoday/archive/23/9/abstract/i1052-5173-23-9-4.htm[/cite]  4  5.

Invece, con l’assenza della precipitazione dei carbonati o di altri minerali e la stratificazione delle stuoie microbiche si hanno quelle che gli anglofoni chiamano MISS (Microbially induced sedimentary structures), in italiano Strutture Sedimentarie Indotte Microbiologicamente (figura 2) [cite]http://www.ncbi.nlm.nih.gov/pubmed/24205812[/cite] 6.

Sebbene entrambe le strutture principali dei sedimenti fossili (stromatoliti e MISS) abbiano come origine i tappeti microbici, le MISS sono generalmente associate a fenomeni di superficie e la sostanziale assenza di strati sovrapposti.
Le stromatoliti – e le tromboliti – invece hanno una terza dimensione pronunciata, dovuta alla precipitazione minerale e alla cementazione di stuoie microbiche impilate una sull’altra. Queste si sviluppano principalmente in ambienti ricchi di calcio e di bicarbonato, di solito in ambienti marini soprattutto alle basse latitudini.
le MISS si verificano  piuttosto in ambienti – sia marini che terrestri –  evaporitici 7 e poveri di carbonati che sono più frequenti alle latitudini più elevate,.
Sia le MISS che le  stromatoliti sono quindi tra le più antiche testimonianze della vita sulla Terra. La loro distribuzione temporale va dal primo Archeano fino ai giorni nostri  ed interessa un po’ tutti i processi sedimentari presenti nelle piane di marea, lagune, spiagge fluviali, laghi, etc.. Le stromatoliti rinvenute mostrano anche che vi fu un grande incremento nelle diversità morfologiche durante il Proterozoico, soprattutto verso la fine del Mesoproterozoico (1,3 miliardi di anni fa). Queste diversità probabilmente riflettono interazioni tra le stuoie microbiche e organismi non microbici più evoluti.

La regione Pilbara, nell’Australia Occidentale, a destra una MISS di 3,5 Gyr fa rinvenuta nello stesso sito da Nora Noffke. 
[showmap name=’Pilbara’] 1113-fossil-rock

I resti più antichi risalgono fino a 3,2 miliardi di anni fa, mentre il più antico deposito sedimentario biologico è stato rinvenuto nella regione di Pilbara, in Australia, e fatto risalire al primo Archeano (circa 3,48 miliardi di anni fa).  Questo dimostra che già in quel periodo la vita procariotica era capace di organizzarsi in strutture evolute 8 [cite]http://www.ncbi.nlm.nih.gov/pubmed/9535661[/cite].

Purtroppo, i fenomeni di mineralizzazione inorganica intorno ai modelli microbici tendono a degradare e pian piano sostituire le strutture biologiche preesistenti. Anche le strutture EPS vengono degradate e sostituite da minerali argillosi. Dopo che i materiali microbici sono scomparsi, il carbonio e il calcio rimasti creano microcristalli di aragonite all’interno delle strutture che un tempo erano corpi viventi , fino a sostituire del tutto  le caratteristiche impronte biogene.
A questo punto resta da spiegare come è possibile  riconoscere un deposito sedimentario naturale da uno di origine biologica quando ormai dopo miliardi di anni ogni molecola biologica stata estratta e degradata dall’ambiente. Semplicemente dalla complessità della struttura minerale rimasta.
Una formazione naturale per quanto complessa essa sia, è pur sempre dominata da una totale casualità nelle forme, dimensioni e struttura. Al contrario, una struttura di origine biotica, anche se completamente mineralizzata e alterata da condizioni ambientali avverse, manterrà comunque molti degli schemi e delle complessità proprie della struttura biologica originaria.

 


Note:

Possibili tracce di strutture biologiche fossili fotografate dai Mars Exploration Rover

Già nel lontano 2004 la missione più longeva su Marte, Opportunity, fotografò delle microsferule di ematite, soprannominate mirtilli, una delle prime prove concrete che su Marte in un tempo molto lontano deve essere esistita acqua allo stato liquido.
Poi nel corso degli anni, il quadro che disegnava Maven dall’orbita, prima Opportunity e Curiosity poi direttamente dal suolo marziano è passato da poco più che una probabilità a una  una certezza: c’era stato un momento nel passato lontano che Marte aveva posseduto dell’acqua liquida sulla sua superficie. Nel corso degli anni si sono accumulate centinaia di prove: corsi essiccati di fiumi, minerali e depositi argillosi che solo la presenza non occasionale di acqua liquida può aver generato sul Pianeta Rosso. 

Terra vs. Marte: Ecco una delle immagini presenti sul Lavoro pubblicato su IJASS, 2014. La somiglianza delle strutture evidenziate sulla Terra (microbialiti:colonie di microrganismi unicellulari) e su Marte (fotografate da Opportunity sul pianeta rosso) è davvero notevole (vedi i contorni automatici ottenuti dal sistema computerizzato, sulla destra) . La successiva analisi automatica di immagine ha confermato con alta significatività statistica l'identità delle immagini.

Terra vs. Marte:
Ecco una delle immagini presenti sul Lavoro pubblicato su IJASS, 2014. La somiglianza delle strutture evidenziate sulla Terra (microbialiti:colonie di microrganismi unicellulari) e su Marte (fotografate da Opportunity sul pianeta rosso) è davvero notevole (vedi i contorni automatici ottenuti dal sistema computerizzato, sulla destra) . La successiva analisi automatica di immagine ha confermato con alta significatività statistica l’identità delle immagini.

Nel 2004 il Mars Exploration Rover Opportunity stava esplorando il Meridiani Planum quando in un costone di roccia chiamato Guadalupe, si imbatté in una delle prime e più evidenti prove che nel lontano passato Marte aveva posseduto acqua liquida [cite]http://mars.nasa.gov/mer/newsroom/pressreleases/20040302a.html[/cite].
Non che la cosa fosse del tutto inaspettata. Già la missione orbitale Mars Odyssey aveva segnalato la presenza di grandi quantità di idrogeno che facevano supporre la presenza di ghiaccio sotto la superficie di Marte, ma non si erano ancora trovate tracce così evidenti della passata presenza di acqua liquida sulla superficie; ma non solo…

Il Dott. Giorgio Bianciardi dell’Università di Siena, biologo e medico, ricercatore dell’Università di Siena, dove insegna Microbiologia e Astrobiologia, [cite]http://ijass.org/publishedpaper/year_abstract.asp?idx=132[/cite][cite]http://ilpoliedrico.com/2012/05/intervista-a-giorgio-bianciardi-sul-labeled-release-experiment.html[/cite], il Dott. Vincenzo Rizzo ex ricercatore del CNR presso l’Istituto di Ricerca per la Protezione Idrogeologica (CNR-IRPI) di Cosenza, geologo, e il Dott. Nicola Cantasano ricercatore CNR all’istituto di Foreste e Agricoltura del Mediterraneo di Cosenza, hanno comparato 30 immagini riprese dalle missioni  Mars Exploration Rover (Spirit e Opportunity) e confrontate con altrettante (45) immagini di stromatoliti terrestri 1 per un totale di 40 000 microstrutture esaminate, tenendo conto della forma, dimensioni, complessità e similitudini tra le immagini marziane e i campioni terrestri [cite]http://ijass.org/PublishedPaper/topic_abstract.asp?idx=474[/cite].

Questa immagine mostra una parte dello sperone di roccia a Meridiani Planum, Mars, soprannominato “Guadalupe.” Fu scattata dal Microscopic Imager (MI) di Opportunity,. Credit: NASA/JPL

Il team italiano evidenzia una similitudine statistica molto elevata tra le microstrutture rilevate dalle immagini riprese su Marte e le strutture microbiologiche (microbialiti 2 e stromatoliti) terrestri.
Tutte le immagini dei campioni sono state ricomposte sulle stesse proporzioni delle immagini trasmesse dai rover (sui metodi di trattamento e i software usati rimando all’articolo originale su ijass.org) e poi si è proceduto con una analisi di tipo frattale 3 [cite]http://ilpoliedrico.com/2012/04/caccia-ai-microrganismi-marziani-le-nuove-ricerche-sugli-esperimenti-labeled-release.html[/cite] (la stessa che Giorgio Bianciardi usa da anni nelle sue ricerche biomediche) sulle immagini prendendo in considerazione otto diversi indici frattali che indicano altrettanti dati riguardo la complessità e le dimensioni delle strutture esaminate.
I risultati a cui sono giunti mostrano una totale similitudine tra le immagini marziane e i campioni terrestri sostenendo che la probabilità di una casualità simile e pari a 1 su 2^8 (p < 0,004). In altre parole i ricercatori italiani sostengono che durante il periodo in cui sussistevano le condizioni per la presenza di acqua liquida su Marte, esistevano ampie colonie di microorganismi unicellulari molto simili a quelli che hanno dato origine alle stesse simili strutture qui sulla Terra.

soprannominata "Salsberry Peak." Sono evidenti i segni della presenza dell'acqua nel passato di Marte.  Credit: NASA/JPL/Caltech/MSSS. Composizione di Jason Major.

Questo mosaico di 28 immagini è stato ripreso il Sol 844 (21/12/2014) e mostra una parte del Gale Crater soprannominata “Salsberry Peak.” Sono evidenti i segni della presenza dell’acqua nel passato di Marte.
Credit: NASA/JPL/Caltech/MSSS. Composizione di Jason Major.


Note:

 

Una botta di C … C/2014 Q2 (Lovejoy)

Credit: Il Poliedrico

costellazioni1Riuscire a fotografare un oggetto così tanto debole, di appena magnitudine 5.0 o giù di lì a non più di 40 gradi da una luna piena che più brillante di così non si può, è soprattutto una botta de … fortuna.
Eppure le immagini che riporto, scattate meno di 24 ore fa, quindi ieri, dimostrano che sì, ogni tanto una bottarella ci può stare. La cometa in questione è la C/2014 Q2 (Lovejoy) che in queste sere sta solcando i nostri cieli e che passerà alla minima distanza dalla Terra il 7 gennaio prossimo, ad appena 70 milioni di chilometri. Questi sono i principali dati EXIF della foto:

  • Modello fotocamera Canon EOS 70D
  • Data/ora scatto 04/01/2015 19:43:09
  • Modalità di scatto Esposizione manuale
  • Tv(Velocità otturatore) 15
  • Av(Valore diaframma) 3.5
  • Modalità di misurazione della luce Misurazione spot
  • Velocità ISO 100
  • Velocità ISO automatica OFF
  • Obiettivo EF-S18-55mm f/3.5-5.6
  • Distanza focale 18.0mm
  • Flash Off
  • Bilanciamento del bianco Auto
  • Modalità AF Messa a fuoco manuale
  • Stile Foto Neutro
  • Nitidezza 0
  • Contrasto 0
  • Saturazione 0
  • Tonalità col. 0
  • Gamma Colore sRGB

Le incerte origini dell’acqua sulla Terra

L’acqua è tutto per questo pianeta. L’acqua è vita; forza motrice, riserva di energia e moderatore degli scambi gassosi atmosferici. Ricopre il 71% della superficie del globo e costituisce il 65% del nostro corpo. Tutte le più grandi civiltà sono sorte  lungo i corsi d’acqua e molte sono perite quando questa è venuta a mancare.
Quindi è giusto chiedersi da dove essa è venuta?

Il rapporto D/H rilevato in alcuni corpi del Sistema Solare con le relative barre di errore. La linea blu indica il valore D/H degli oceani della Terra. La linea arancio rappresenta i valori presunti della Nebulosa Primordiale che non si discosta poi molto dal rapporto D/H del mezzo interstellare (linea rossa) Lo sfondo indica la curva di temperatura del Sistema Solare e grossomodo la demarcazione fra una zona più calda (>200 K) e una inferiore. Credit: Il Poliedrico

L’acqua è composta da due elementi fra i più diffusi dell’Universo [cite]http://ilpoliedrico.com/2012/05/le-abbondanze-cosmiche.html[/cite]. Qualche volta però l’isotopo pesante dell’idrogeno il cui nucleo è composto da un  protone e un neutrone, il deuterio (D), sostituisce uno (HDO, acqua semipesante) o entrambi (D2O, acqua pesante) gli atomi di idrogeno nella molecola alterandone alcune proprietà fisico-chimiche 1.
Il rapporto tra l’acqua pesante e l’acqua normale indica pertanto la percentuale tra il deuterio e l’idrogeno costituenti l’acqua (D/H). Tutto il deuterio presente nell’Universo si formò durante la nucleosintesi primordiale, nei 3 minuti successivi al Big Bang (D/H = 2,4 x 10-4). Però è anche vero che il deuterio viene distrutto dalla nucleosintesi stellare, tutto quello che ancora rimane proviene da nubi di gas ancora non ancora riciclate in stelle, come quella che fornì il deuterio alla nebulosa primordiale [cite]http://wp.me/p2GRz5-RT[/cite]. 

Da quello che possiamo intuire da diagramma qui accanto è che il rapporto  D/H rimane più o meno costante negli oggetti provenienti dalla Nube di Oort, attestandosi a valori almeno doppi a quelli della Terra e almeno venti volte superiori a quello del mezzo interstellare (D/H = 0,165 – 14 x 10-4). Il motivo di tale arricchimento rispetto al valore di fondo è da imputarsi unicamente alle seppur lievi differenze fisico-chimiche tra l’idrogeno e i suoi isotopi (esiste anche il trizio, costituito da un protone e due neutroni ma è radioattivo e ha un’emivita di soli 12,33 anni). Queste sono responsabili di fenomeni di frazionamento isotopico che avvengono in condizioni di bassa temperatura (< 100° K.) che le arricchiscono di deuterio a scapito del mezzo interstellare [cite]http://iopscience.iop.org/1538-4357/591/1/L41/fulltext/17236.text.html[/cite].

Per quanto riguarda i pianeti esterni indicati nel diagramma è stato utilizzato il rapporto tra deuterio e idrogeno gassoso (H2) osservato in spettroscopia; anche in questo caso i valori indicati sono piuttosto dissimili tra i diversi giganti gassosi. Il motivo di queste differenze è ancora sconosciuto, anche se tra i principali indiziati di questa particolare distribuzione isotopica possono essere sia loro diversa massa (il processo di differenziazione planetaria può aver fatto precipitare il deuterio negli strati più interni dei pianeti più pesanti), ma forse anche alla loro zona di accrezione; mentre Giove e Saturno hanno raccolto il loro materiale nella parte ancora più calda (> 70 – 100° K.) della nebulosa, probabilmente Urano e Nettuno si sono formati in una zona più fresca (< 70° K.) e si sono evoluti da planetesimi piuttosto ricchi di deuterio.

[table “59” not found /]

Un altro rompicapo è l’elevato rapporto D/H di Encelado, una luna di Saturno che, a fronte di un rapporto D/H molto basso del pianeta – non molto dissimile a quello del mezzo interstellare – ha un rapporto non molto diverso da quello degli oggetti della nube di Oort.

Se – per ora – il rapporto D/H degli oceani terrestri appare sfuggire alla comprensione (solo 103P Hartley 2, una cometa gioviana, si avvicina ai valori terrestri), Quello di Venere appare ancora più misterioso: ben 120 volte quello della Terra.
Nel 1993 due ricercatori della Divisione di Geologia e Scienze Planetarie del California Institute of Technology  di Pasadena, Mark A. Gurwell e Yuk L. Yung proposero un interessante meccanismo che poteva spegare efficaemente il rebus venusiano [cite]http://www.sciencedirect.com/science/article/pii/0032063393900373[/cite] [cite]http://onlinelibrary.wiley.com/doi/10.1029/2009JA014055/abstract;jsessionid=36BB06CE6E970E21D7545F06C2508A62.f02t04[/cite]. In pratica la fotodissociazione del vapore acqueo (tutta l’acqua di Venere è in questa forma) tra i 200 e 400 chilometri scinde il vapore acqueo in ossigeno monoatomico e idrogeno molecolare (H2) o deuterato (HD o D2) con diverse velocità; la velocità di espulsione dell’idrogeno giunge così ad essere fino a 8 – 9 volte più veloce del suo isotopo più pesante ed essere così più facilmente disperso nello spazio. Questo meccanismo spiega perché adesso il rapporto D/H sia così alto ma non del tutto: occorre che anche la massa d’ acqua del pianeta (ipotizzando che Venere abbia avuto un rapporto D/H inizialmente simile alla Terra) sia stata interamente degassata solo 500 milioni di anni fa [cite]http://www.sciencedirect.com/science/article/pii/S0019103599961869[/cite].
Anche l’indice marziano è almeno 50 volte superiore al nostro; anche lì lo stesso meccanismo di deplezione dell’idrogeno gassoso dall’atmosfera visto per il caso di Venere ha prodotto un incremento notevole del deuterio rimasto. Anche in questo caso, conoscere esattamente il tasso di deperimento dell’idrogeno rispetto al suo isotopo pesante potrebbe consentire di estrapolare quando Marte perse la capacità di sostenere acqua liquida e la sua già tenue atmosfera.

Alla luce di queste informazioni per cercare di rispondere ancora alla domanda iniziale occorre partire dalle origini del Sistema Solare, più di 5 miliardi di anni fa. Allora tutto quello che vediamo oggi era solo polvere e gas interstellari, una tipica nebulosa in lenta contrazione da cui sarebbero poi nati il Sole e i pianeti. 
Fin da quando l’Ipotesi Protonebulare prese credito nella comunità scientifica, i dubbi sulla provenienza dell’acqua sul nostro pianeta furono fonte di discussione. L’acqua era di origine endogena o esogena alla Terra? I calcoli mostravano che il pianeta si era formato 4,5 miliardi di anni fa in una zona (fascia) protonebulare dove la viscosità delle polveri raggiungeva i 900 Kelvin. l’idea che l’acqua esistesse a quelle temperature sembrava impossibile. Eppure probabilmente è quello che avvenne. 
Una certa quantità d’acqua poteva essere intrappolata negli alluminosilicati (zeoliti) e nelle olivine (ringwoottiti) come idrossidi. Anche quando l’evento Theia (la nascita della Luna) rifuse il pianeta, una certa quantità d’acqua rimase ancora intrappolata nel mantello 2 e quando per degassamento raggiunse poi la superficie  può aver contribuito al raffreddamento della crosta terrestre e formato i primi oceani. 
Comunque per quanto una parte dell’acqua terrestre possa essere di origine endogena ancora il conto non torna. Nel 2009 il geochimico francese Francis Albarede, dell’Ecole Normale Supérieure di Lione, propose che la Terra fosse stata essenzialmente arida al momento della sua formazione. Gli altri elementi volatili sarebbero arrivati sulla terra atttraverso l’Intenso Bombardamento Tardivo dagli asteroidi più interni nei 100 milioni di anni successivi alla formazione della Luna  [cite]http://www.nature.com/nature/journal/v461/n7268/full/nature08477.html[/cite]. A conferma di questa teoria c’è l’indice D/H delle varie meteoriti condritiche (CC) che esprimono un valore virtualmente identico a quello terrestre.Per contro, c’è ragionevolmente da aspettarsi che non furono solo gli asteroidi più interni a cadere sulla Terra ma anche oggetti più esterni come le comete della fascia di Kuiper e della Nube di Oort, tutti oggetti con un rapporto D/H molto diverso da quello dei nostri oceani, tanto che questo oggi apparirebbe diverso anche da quello delle condriti 3.
Oppure, è questa l’ipotesi più probabile, il materiale che costituì poi la Terra era solo parzialmente povero di composti volatili. Fu sufficiente una concentrazione da 500 a 3000 ppm di acqua nei planetesimi durante la fase di accrezione per avvicinarsi almeno alla metà di acqua presente sulla Terra e ridimensionare in parte l’importanza dell’apporto tardivo delle comete.  Quindi una miscela di acqua endogena (±50% con DH 1.5 x 10 -4) e acqua esogena (± 25% con D/H 3.0 x 10-4 e ± 25% con D/H 1.7 x 10-4 ) poteva produrre un D/H intorno 1,9 x 10-4, vicino ma forse non abbastanza ai valori attuali.

Certo che acqua con un rapporto D/H uguale agli oceani terrestri che ne giustifichi anche la quantità non si trova da nessun’altra parte del Sistema Solare:gli asteroidi interni hanno grossomodo il giusto rapporto ma non possono giustificarne la quantità e le comete il contrario. Senza dimenticare che su un pianeta dinamico come il nostro nel giro di 4 miliardi di anni i numerosi processi di frazionamento isotopico possibili possono aver alterato il rapporto fra deuterio e idrogeno tanto da renderlo unico in tutto il sistema.
Per concludere, appare evidente che aspettarsi una risposta alla domanda iniziale “Da dove viene tutta l’acqua della Terra?” studiando il solo rapporto D/H è – a mio avviso – del tutto vano. Troppi sono i meccanismi che alterano il rapporto tra deuterio e idrogeno, e qui ne ho descritti solo alcuni.

 

il primo volo della Orion

 
Il primo lancio della nuova capsula Orion.
Credi: NASA
Schema della Orion e il suo inserimento nell'ogiva del vettore. Credit: NASA. Fonte: Wikipedia

Schema della Orion e il suo inserimento nell’ogiva del vettore.
Credit: NASA. Fonte: Wikipedia

Con un solo giorno di ritardo sul programma, Il nuovo veicolo spaziale Orion della NASA è stato lanciato con successo ieri mattina 5 dicembre 2014 alle ore 12:05 GMT (13:05 ora italiana) dallo Space Launch Complex 37 di Cape Canaveral, Florida.
Il lancio è stato effettuato da un razzo Delta 4 Heavy della United Launch Alliance, un razzo alto ben 73 metri per un peso di 740 tonnellate.
Rispetto alle antiche capsule Gemini e Apollo, la Orion vanta dimensioni di tutto rispetto: ben 3,4 metri di altezza per 5 metri di diametro di base. Così la Orion sarà in grado di trasportare fino a sei astronauti per escursioni di tre settimane  e quattro per le missioni più lunghe.

Il volo di prova della navicella è durato appena 4 ore e mezza, il tempo di percorrere un paio di orbite raggiungendo il punto più alto a 5800 chilometri di quota, ben 14 volte di più della Stazione Spaziale Internazionale (413 km) durante la seconda.
Così è stato possibile testare la tenuta del più grande scudo termico mai costruito per una navetta, che in fase di rientro ha raggiunto i 3200 chilometri orari (0,9 m/s) e una temperatura allo scudo di 2200° Celsius. Lo scudo della Orion non è in mattonelle riciclabili come quello dello Space Shuttle che era sottoposto a temperature ben inferiori, ma di materiale ablativo, cioè che si disperde durante il rientro in atmosfera.

L’ultimo viaggio di un veicolo adatto ad accogliere astronauti oltre l’orbita bassa fu nel 1972 con l’ultima delle missioni Apollo, la 17. 

 

Il rientro della Orion

 

Where no one has gone before!

Il lander Philae osservato dalla navicella Rosetta subito dopo il suo lancio.

Il lander Philiae osservato dalla navicella Rosetta subito dopo il suo lancio.

È ormai su tutti i blog del genere ma non potevo esimermi dal partecipare a questo evento storico. Alle 17:05 circa ora italiana il lander Philae che era partito dalla sonda madre Rosetta  stamani alle 10:00 si è adagiato sulla superficie della cometa  67P/Churyumov-Gerasimenko

La storia della missione è stata piuttosto travagliata e in origine era stato immaginato che dovesse addirittura riportare alcuni campioni cometari sulla Terra. Poi i soliti pesanti tagli di bilancio alla NASA fecero abortire l’idea di una doppia missione congiunta che prevedeva di usare hardware comune 1 per la sua Comet Rendezvous Asteroid Flyby e Rosetta dell’ESA, nate sull’onda dei successi astronautici raggiunti nel 1986 con la cometa di Halley. Il progetto americano morì e Rosetta fu completamente riprogettata dall’ESA, che però fu costretta a rinunciare all’invio dei campioni raccolti alla Terra per i soliti motivi di bilancio.
Poi nel 2002 un incidente al vettore Ariane 5 posticipò la missione al 2004, costringendo così a rivedere il bersaglio finale della missione che divenne l’attuale cometa.

Ma Rosetta in questi 10 anni non è mai stata con le mani in mano: il 5 settembre 2008 ha sorvolato da 800 chilometri l’asteroide 2867 Šteins e il planetoide metallico 21 Lutetia il 10 luglio 2010. Poi una ibernazione che prima del risveglio aveva procurato qualche apprensione. Ma niente paura, Rosetta ce l’ha fatta, alla faccia dei barbagianni che raccontano che la missione Rosetta sia stata soltanto uno spreco di soldi.

Omochiralità quantistica, biologica e universalità della Vita

Anche se in merito sono state fatte le diverse e più disparate ipotesi, dalla radiazione polarizzata di una supernova vicina nel periodo della nascita della vita sulla Terra fino alla radiazione di una pulsar ormai spersa e forse estinta che investiva il pianeta sempre in quei momenti, nessuna di queste è a mio avviso abbastanza libera da eventi dovuti al caso. Probabilmente l’origine dell’omochiralità levogira degli aminoacidi necessari alla vita è dovuta a fattori più fondamentali e universali. 

[latexpage]

stereochemTutti gli aminoacidi e molte altre molecole – isomeri – hanno un aspetto diverso se invertite spazialmente. Tutta la vita che conosciamo è capace di utilizzare solo una delle due immagini; in genere la versione levogira per quanto riguarda gli aminoacidi e la versione destrogira per i glucidi. Queste molecole complesse esistono in due forme speculari e non sovrapponibili dette enantiomeri  che, in base alla disposizione spaziale in tre dimensioni degli atomi, vengono definite destro o levogire per la loro capacità di ruotare il piano della luce polarizzata 1. A parte questa apparente sottigliezza, entrambi gli enantiomeri hanno sostanzialmente le stesse proprietà fisiche 2. Però, in certe reazioni o strutture, è utilizzabile solo l’una o l’altra forma. La principale funzione di particolari proteine (macromolecole biologiche formate da sequenze di aminoacidi legate tra loro) dette enzimi, è quella di catalizzare le reazioni biomolecolari, tra cui la sintesi delle altre proteine. La capacità catalitica degli enzimi dipende criticamente dalla loro struttura tridimensionale, la quale a sua volta dipende dalla direzione della sequenza degli aminoacidi. Catene sintetiche di amminoacidi formate sia da enantiomeri levogiri sia da enantiomeri destrorsi in una miscela 1:1, detta racemo, non si avvolgono nel giusto modo per produrre un’efficace attività catalitica; esse sono incapaci di formare una regolare struttura elicoidale.  Il DNA, ad esempio, è composto da basi azotate, glucidi e fosfati racchiusi in strutture chiamate nucleotidi le quali compongono la celebre doppia elica: che qui è sempre destrorsa. 
Ogni produzione spontanea 3 di aminoacidi ottenuta in laboratorio da luogo sempre a una soluzione racemica mentre le catene proteiche degli esseri viventi che conosciamo utilizzano esclusivamente forme levogire. 
Il problema dell’omichiralità degli  isomeri necessari alla vita non è mai stata risolta del tutto. Alcuni ritengono che questa sia frutto della selezione entropica naturale [cite]http://dx.doi.org/10.2174/187231308784220536[/cite] che pare favorisca la selezione delle migliori soluzioni di trasduzione dell’energia disponibili. In questo una soluzione enantiopura è decisamente migliore di una racemica, come dimostrano altri studi [cite]http://pubs.acs.org/doi/abs/10.1021/jp046478x[/cite], ma tutti questi studi pur dimostrando la necessità della vita di scegliere per l’omochiralità non spiegano perché per gli aminoacidi sia stato scelto il modello levogiro e destrogiro per gli zuccheri.
Una plausibile spiegazione viene dalle riflessioni di Frederic Vester e Tilo L. V. Ulbricht del 1957, i quali sospettarono la appena scoperta Violazione della Parità prodotta dall’Interazione Debole negli atomi [cite]10.1016/S0040-4020(01)92714-0[/cite] di essere responsabile dell’omochiralità a ogni scala. o quasi..

La simmetria P

L'interazione debole di un antineutrino elettronico con un neutrone all'interno di un nucleo atomico può spingerlo a decadere in un protone e un elettrone. Credit Il Poliedrico.

L’interazione debole di un antineutrino elettronico con un neutrone all’interno di un nucleo atomico può spingerlo a decadere in un protone e un elettrone. Credit Il Poliedrico.

In fisica si chiama Simmetria P, simmetria di trasformazione di parità 4. Quasi tutte le leggi fisiche fondamentali rispettano questa regola. L’elettromagnetismo, la forza di gravità e l’interazione nucleare forte rispettano tale simmetria, ossia sono invarianti rispetto all’inversione delle coordinate spaziali (potremmo immaginare lo stesso fenomeno come visto riflesso allo specchio procedere verso il medesimo risultato che nel mondo reale, solo che è appunto invertito spazialmente). La più debole delle quattro interazioni, l’interazione debole, invece no. Anzi è proprio lei la causa della violazione della Simmetria P.
Come dice il suo nome, l’interazione debole è veramente debole: circa 1000 volte meno intensa della forza elettromagnetica e 100 000 volte meno intensa della forza nucleare forte. L’interazione debole è responsabile sia per la fusione nucleare delle particelle subatomiche che per l’emissione di raggi beta durante il decadimento radioattivo. I raggi beta sono in realtà elettroni o positroni ad alta energia espulsi da un nucleo atomico durante il decadimento beta ($\beta$). Queste particelle hanno uno spin intrinseco e quindi, quando si muovono lungo il loro asse di spin, si possono classificare come sinistrorsi o destrorsi. La violazione della parità indica che le particelle beta emesse dai nuclei radioattivi mostrano segni evidenti di una asimmetria chirale: le particelle sinistrorse emesse durante il decadimento superano di gran lunga quelli destrorse.
Durante il decadimento beta vengono emesse anche altre particelle elettricamente neutre – il neutrino e l’antineutrino – che si propagano quasi alla velocità della luce. Come l’elettrone, l’antineutrino emesso dalla materia radioattiva ha uno spin ma, diversamente dall’elettrone, esiste solo nella forma destrorsa. Pare che nell’universo non esistano neutrini destrorsi e antineutrini sinistrorsi.

Chiralità Quantistica

wzIl Modello Standard delle particelle elementari, unisce le leggi dell’eletttromagnetismo di Maxwell e l’interazione debole in un’unica forza, l’Interazione Elettrodebole e introduce il concetto di correnti deboli cariche e le correnti deboli neutre mediate dai bosoni $W^\pm$ e $Z^0$. L’opera di queste correnti , o forze,  tra due particelle elementari dipende dalla distanza tra le particelle, dalla loro carica elettrica e dalla direzione del loro spin. L’elettrone ha una carica elettrica negativa e la forza elettrica tra due elettroni qualsiasi è sempre repulsiva. Invece, la carica debole $W$ è non nulla per un elettrone sinistrorso e nulla per uno destrorso. Quindi, un elettrone destrorso si limita semplicemente a non percepire la forza $W$. La corrente debole neutra $Z$ invece agisce sullo spin, elettroni sinistrorsi e destrorsi hanno cariche $Z$ di segno opposto e di intensità circa uguale. La differenza di segno provoca l’attrazione degli elettroni destrorsi verso il nucleo da parte della corrente $Z$ e la repulsione di quelli sinistrorsi 5 6. È per questo che il decadimento nucleare beta, dominato dalle correnti deboli, produce un eccesso di elettroni sinistrorsi. Se non fosse violata la parità, in un mondo visto allo specchio il decadimento beta produrrebbe elettroni destrorsi e la corrente debole neutra $Z$ attirerebbe verso il nucleo anche gli elettroni sinistrorsi. Questi processi non si osservano però nel mondo reale, il che è un altro modo per affermare che la forza debole è chiralmente asimmetrica e che la parità non viene conservata.

Chiralità molecolare

life

Pozze di fango, comete e sacche di polvere interstellare. Ecco dove possono nascere i mattoni della Vita. Credit: Il Poliedrico

Come conseguenza dell’interazione debole, gli atomi, finora pensati achirali, mostrano invece di possedere una distinzione tra destra e sinistra. Questa distinzione se è presente su scala atomica, potrebbe riflettersi su scale di ordine superiore? C’è da aspettarsi che anche le strutture molecolari più complesse, come ad esempio gli aminoacidi, mostrino proprietà fisiche differenti in base alla loro chiralità. L’asimmetria chirale a livello subatomico ha origine a livello fondamentale con la violazione della parità. Su scala superiore la corrente debole neutra $Z$ fa sì che che una molecola chirale abbia stati energetici diversi tra i due isomeri.
Per comprendere meglio questo meccanismo, immaginiamo una molecola chirale come un’elica o una vite e supponiamo che la corrente $Z$ non esista. Un elettrone con spin $\uparrow$ che si muove nello stesso senso dell’elica $\uparrow$ è destrorso,  mentre è sinistrorso se si muove nel senso contrario. Dal punto di vista probabilistico però dovremmo comunque aspettarci che la chiralità media degli elettroni sia nulla; però le correnti elettromagnetiche presenti nell’atomo tendono a far allineare l’asse orbitale dell’elettrone nel senso opposto al suo spin. Questo fenomeno, noto come accoppiamento spin-orbita, tende a far allineare l’elettrone nel moto opposto al suo spin in una molecola chirale destrorsa, per cui in questo caso gli elettroni tendono ad essere sinistrorsi. Invece negli enantiomeri levogiri sono gli elettroni destrorsi a prevalere. Ora tornando a prendere in considerazione anche la corrente debole neutra $Z$, che interagisce con gli elettroni  in modi dipendenti dalla loro chiralità, viene fuori che essa provoca una diversità energetica tra due enantiomeri opposti [cite]http://pubs.rsc.org/en/content/articlelanding/1983/c3/c39830000117#!divAbstract[/cite].
Come è facile intuire, l’enantiomero levogiro degli aminoacidi- che è quello biologicamente più dominante – è anche quello che possiede l’energia molecolare più bassa (gli elettroni dominanti sono destrorsi), mentre al contrario è l’enantiomero destrorso il più energetico.
Tutto questo è sostanzialmente in accordo con i principi della statistica e della termodinamica che in caso di sostanziale equilibrio è la forma con l’energia più bassa a prevalere; è stato calcolato che la discrepanza nella produzione spontanea dei due isomeri è così minuscola da passare inosservata: una parte su 10^17.
Un’altra fonte dell’omochiralità è il decadimento $\beta$. Nell’ipotesi Vester-Ulbricht si sostiene che durante il decadimento spontaneo viene emessa una debole traccia elettromagnetica, un Effetto Bremsstrahlung 7 interno all’atomo [cite]10.1016/S0031-8914(36)80008-1[/cite]. Questa emissione ha la stessa polarizzazione della particella che la emette. Per gli effetti dell’interazione elettrodebole che abbiamo visto più sopra, la maggior parte, circa l’80%, degli elettroni emessi durante il decadimento sono sinistorsi, e così è anche per la radiazione. Gli effetti della radiazione polarizzata è che essa tende a distruggere le molecole chirali dello stesso ordine, così una polarizzazione sinistrorsa tende a distruggere le molecole sinistrorse, ma il contributo della radiazione Bremsstrahlung interna è veramente molto piccolo; si calcola invece che l’interazione diretta della radiazione $\beta$ (elettroni e positroni) sui due isomeri sia comunque solo di una parte su 10^11. Un importante sostegno a questa teoria viene dai risultati di un recente studio che mostra un legame significativo  tra l’energia degli elettroni diversamente polarizzati e l’evoluzione chirale della bromocanfora [cite]http://dx.doi.org/10.1103/PhysRevLett.113.118103[/cite].
Ecco quindi sostanzialmente spiegato come mai ogni produzione spontanea di aminoacidi in laboratorio (ex. gli esperimenti di Stanley e Urey) porta sempre a una sostanziale soluzione racemica.
Ma una scappatoia al racemo c’è. Come insegna la termodinamica, un sistema chiuso tende sempre ad evolversi verso uno stato di equilibrio di minima energia, dove le concentrazioni molecolari sono definite dalla loro energia ed entropia. Trascurando la diversità energetica tra i due enantiomeri dovuta dalle correnti nucleari deboli, differenza reale ma comunque piccolissima, un sistema chiuso quindi può solo evolversi verso un sistema chiralmente simmetrico dove gli isomeri levogiri e destrorsi sono presenti in uguale proporzione. In un sistema aperto all’ingresso di nuova materia ed energia invece non è raggiungibile un equilibrio termodinamico; al suo posto accade un fenomeno chiamato rottura di simmetria, che porta alla predominanza spontanea di uno dei due enantiomeri sull’altro. Anche in questo caso gli gli stessi principi statistici e termodinamici suggeriscono che siano gli enantiomeri levogiri degli aminoacidi a prevalere.
E come la mano sinistra si intreccia meglio con la destra, anche i glucidi di conseguenza hanno subito la loro selezione: per adattarsi meglio agli aminoacidi levogiri i glucidi hanno subito un’evoluzione complementare fino a produrre strutture elicoidali destrorse, precursori del DNA.

Conclusioni

L’idea che l’omochiralità delle forme più complesse possa trarre origine dalle leggi più fondamentali della natura è veramente attraente. 
Non occorrerebbe più attendere – o dimostrare – che un sorgente di radiazioni polarizzata illumini un mondo promettente per ottenere la scintilla omochirale. Elettroni sinistrorsi prodotti dal decadimento $\beta$ di isotopi prodotti dalle supernovae sono senza dubbio un fonte universale  di radiazione polarizzata capace di condizionare gli isomeri ovunque: dagli asteroidi alle comete ghiacciate nelle nubi di Oort di di ogni sistema stellare; dai fondali di oceani alieni a pozze di fango su mondi appena formati fino ad arrivare anche alle nubi interstellari e ai globuli di Bok.
Se l’ipotesi che le radici dell’omochiralità sono nell’Interazione Elettrodebole fosse corretta, dimostrerebbe che le fondamenta della Vita sono più legate alla struttura fondamentale dell’Universo di quanto finora si pensi. Una gran bella idea!


Note:

Saturno? Beccato!

Saturno? Beccato!

Fine occultazione SaturnoIl 25 ottobre 2014 la Luna ha occultato Saturno. Il momento del primo contatto tra i due astri è avvenuto circa alle 18:36 ora legale italiana (16:36 UTC), quando il Sole era appena sotto l’orizzonte ed era quindi virtualmente impossibile vederlo ad occhio nudo.
Per un soffio però sono riuscito a beccare la fine dell’occultazione in ben due fotogrammi, quando la Luna era ancora appena sopra l’orizzonte alle 19:17.
Quando si dice che la speranza è sempre l’ultima a morire 😉