La nebulosa Lamantino e il suo microquasar SS 433

L’uomo ha sempre inteso scorgere figure a lui familiari in ogni dove 1, nelle nuvole come nella volta stellata, proiettandovi immagini di miti e leggende, facendo nascere così le costellazioni, così diverse da cultura e cultura eppure tutte egualmente degne di essere conosciute. Forse un giorno ve ne parlerò.  

[virtual_slide_box id=”6″]

Pensate di scorgere la figura di un lamantino – una specie di grosso tricheco senza zanne – nel cielo e ampia circa 700 anni luce, per noi grande quanto quattro lune piene, in direzione dell’Aquila. Questa è W50 2, conosciuta anche come Nebulosa Lamantino (Manatee in inglese),  il resto di una supernova esplosa almeno 20000 anni fa a 18000 anni luce dal Sole:  SNR G039.7-02.0.

Normalmente si è portati a pensare che il guscio di una supernova sia grossomodo sferico o giù di lì, eppure i resti di questa supernova dimostrano che non sia sempre così. In questo caso infatti il guscio è notevolmente alterato dai poderosi getti e dai campi magnetici emessi  dal curioso oggetto che ne è al centro: SS 433.

SS 433 3 e in realtà un sistema binario ad eclisse composto dai resti dell’antica supernova, una stella di neutroni oppure – più probabilmente – un buco nero, che risucchia materia dalla stella compagna, una vecchia stella di classe A ancora nella sequenza principale, che una volta doveva essere la componente più piccola di questo stretto sistema stellare. La materia risucchiata dall’accrettore crea un disco di accrescimento attorno al resto di supernova che dà origine a due getti perpendicolari di idrogeno ionizzato che si propagano nello spazio a velocità relativistiche: circa il 26% della velocità della luce.

La nebulosa Lamantino e la sorgente SS 433.
Credit: Il Poliedrico

Per tutte queste peculiarità SS 433 viene oggi considerato un microquasar 4, in quanto rispecchia in scala ridotta quello che le galassie attive fanno nella loro  gioventù.
L’asse di rotazione del resto di supernova non è complanare con l’asse del sistema ma inclinato di circa 20 gradi con questo. Il risultato è che l’asse di rotazione ruota di conseguenza intorno alla perpendicolare del sistema con un ciclo di 162,5 giorni. Il moto precessionale conseguente attorciglia le linee del campo magnetico del disco che si propagano nello spazio, mentre i due getti di plasma emessi spazzano lo spazio con un movimento elicoidale che disegna due coni divergenti. Tutto questo si traduce nel bizzarro spettro di SS 433 che appare contemporaneamente avvicinarsi e allontanarsi da noi, ma che in realtà è dovuto ai flussi di plasma che viaggiano in direzioni opposte.
Non solo, oltre all’effetto Doppler lo spettro di SS 433 è influenzato anche dalla relatività: sottraendo infatti gli effetti dello spostamento Doppler rimane una componente di spostamento verso il rosso corrispondente ad una velocità di circa 12000 chilometri al secondo. Questa non rappresenta l’effettiva velocità di recessione di SS 433, ma è dovuta dalla dilatazione temporale che si manifesta alle velocità relativistiche dei getti dove, per le componenti del plasma e di conseguenza anche per la radiazione da loro emessa, il tempo scorre più lentamente.
E sono appunto questi getti a deformare la sfericità del guscio e a farla somigliare più alla figura abbastanza familiare di un lamantino che riposa.

Ecco spiegata quindi la strana forma della Nebulosa Lamantino e il curioso microquasar che ne è al centro.


Il magnetismo dei mantelli planetari

Il ruolo del mantello nei pianeti rocciosi viene spesso sottovalutato. Adesso è giunto il momento di riconsiderare la loro importanza nello sviluppo di un pianeta.

Si suppone che i mantelli dei pianeti rocciosi siano, come ci mostra la composizione chimica di quello terrestre, ricchi di magnesio e ossigeno. Quindi studiare i minerali di ossido di magnesio può essere utile per capire l’interno dei pianeti.
Un team guidato da Stewart McWilliams del Carnegie Institute of Science è riuscito a riprodurre le proibitive condizioni esistenti nei mantelli planetari, ovvero pressioni che vanno da 0,3 TPa 1, il doppio della pressione esistente nella zona del mantello inferiore terrestre, fino a 1,4 TPa, condizione questa presente su pianeti molto più grandi della Terra che continuamente oggi scopriamo in orbita ad altre stelle.
Il metodo usato per produrre simili pressioni e temperature è simile a quello sviluppato per i reattori a fusione nuleare chiamato fusione a confinamento inerziale (Inertial confinement fusion, in breve ICF) In questo caso però il bersaglio è composto da molecole di ossido di magnesio, appunto uno dei composti più importanti del mantello.

Credit: Il Poliedrico

Particolarmente resistente alle alte temperature e pressioni, l’ossido di magnesio è largarmente utilizzato nell’industria dei materiali refrattari e nei cementi per l’edilizia. Studi teorici mostrano che esso può esistere in natura solo in tre diversi stati: solido alle nostre condizioni ambientali, liquido a temperature elevate (> 3125 K a pressione normale) e un’altra particolare struttura solida che si manifesta a pressioni – e temperature – molto alte, come quelle ad esempio nel mantello di un pianeta.
Quest’ultima struttura però finora non era mai stata osservata prima. McWilliams e il suo team hanno studiato per la prima volta come l’ossido di magnesio si comporta in questi diversi stati scoprendo che il legame molecolare subisce importanti modifiche passando da uno schema simile al cloruro di sodio nella prima forma (B1 nella figura) alla seconda fase solida simile a quella delle leghe metalliche binarie (B2).

Un altro particolare importante è stato osservato nell’ossido di magnesio: questo allo stato fuso – magma fuso – diventa un semiconduttore, mentre al  normale stato solido è un isolante naturale. Questa scoperta riflette il comportamento alla fusione di altri non metalli come il carbonio, il silicio e lo zolfo.

Diagramma di fase del MgO: la fase solida B1 e la fase solida B2. I pallini colorati sono i dati ricavati dagli esperimenti. In grigio l’intervallo teorico di transizione previsto dalla teoria a 0 K. Le temperature di fusione sperimentali (6, 7) sono rappresentate dai triangoli bianchi.
Sono inoltre mostrate le condizioni  planetarie interne previste per la Terra, quelle ipotizzate per un  pianeta di 5 masse terrestri, Giove, e per la massa di un gioviano caldo; la discontinuità nella temperatura (a 1.3 e 6.5 Mbar rispettivamente) nei pianeti di tipo terrestre corrispondono al limite del mantello.

Queste scoperte sono molto importanti e possono aiutare a capire come possono essersi evoluti i pianeti.
Prima che un pianeta si avvii verso la sua fase di differenziazione nota come Catastrofe del Ferro le condizioni fisiche – principalmente temperatura – possono permettere l’esistenza di ossido di magnesio – e di altri non metalli – allo stato fuso, un oceano di magma in grado di generare correnti elettriche e quindi un campo magnetico.
Questo campo magnetico primordiale può pertanto essere abbastanza importante da riuscire a proteggere una atmosfera primordiale generata dal degassamento del magma liquido dall’azione erosiva dei venti stellari che nelle prime fasi della nascita di un sistema solare possono essere particolarmente violenti.
In seguito il campo magnetico generato da un nucleo di ferro fuso differenziato può essere ben più efficace delle correnti elettriche di un unico grande oceano di magma in via di solidificazione e di stratificazione.

Allo stesso modo ancora adesso l’ossido di magnesio nella seconda fase solida può ancora esistere nei mantelli inferiori di esopianeti rocciosi super massicci, generando un campo magnetico che forse il nucleo solido non può generare 2.


Riferimenti:
Phase Transformations and Metallization of Magnesium Oxide at High Pressure and Temperature,” by R.S. McWilliams et al., Science, 2012.
Published Online November 22 2012
Science 7 December 2012:
Vol. 338 no. 6112 pp. 1330-1333
DOI: 10.1126/science.1229450

La fine del mondo

Spesso mi viene chiesto come e quando morirà il Sole, associando la sua fine con quella della Terra. Tranquilli, mancano ancora diversi miliardi di anni affinché il Sole muoia, ma la Terra cesserà di essere abitabile molto tempo prima, sempreché non accada una catastrofe cosmica imprevista o noi non la distruggiamo molto prima.

Credit: Wikipedia. Rielab. Il Poliedrico

Cinque o sei miliardi di anni fa una o più stelle di seconda generazione esplosero in un remoto angolo di questa galassia disperdendo il loro prezioso contenuto di metalli pesanti in una oscura nebulosa ormai scomparsa 1.
Le onde d’urto destabilizzarono quella nebulosa che si frammentò in diverse parti che a loro volta incominciarono a collassare su se stesse. Uno di questi frammenti avrebbe in seguito dato origine al Sole e a tutto il suo sistema solare, compresa la Terra e alla Vita come la conosciamo, circa quattro miliardi e mezzo di anni fa.
È da allora che il nostro Sole converte – brucia – idrogeno in elio nelle profondità del suo nucleo in una incessante – per nostra fortuna – reazione termonucleare. I nuclei di idrogeno – protoni, di carica elettrica positiva – scontrandosi riescono a superare la barriera coloumbiana che normalmente li allontanerebbe solo grazie all’enorme calore (calore == movimento) e all’enorme pressione che esistono nel suo nucleo 2.

Credit: Il Poliedrico

Il prodotto di scarto di questa reazione, nuclei dell’atomo di elio, per ora inerte a quelle condizioni fisiche, spinge le reazioni termonucleari  dell’idrogeno a migrare sempre più in su verso la superficie, facendo espandere la zona di fusione e aumentare così la luminosità della stella.
L’aumento di luminosità è impercettibile ai sensi e a scale temporali umane ma è costante, circa il 10% ogni 1100 milioni di anni: quando il Sole iniziò a brillare di luce propria brillava il 30% in meno di oggi  e era anche un po’ più piccolo.
Se non fosse stato per un poderoso effetto serra, quattro miliardi di anni fa la temperatura sulla Terra sarebbe stata ben al di sotto del punto di congelamento dell’acqua. La zona Goldilocks a quel tempo era vicina all’orbita di Venere ma è evidente che questo non ha portato bene a quel pianeta.
Il quasi impercettibile innalzamento della luminosità e temperatura del Sole dovuto all’espandersi della zona di fusione, provocherà l’aumento della quantità di energia irradiata nello spazio e ricevuto dal nostro pianeta, rendendo questo inabitabile nel giro di poco più di 1 o 2 miliardi di anni a partire da adesso, quindi ben più prima che il Sole diventi una gigante rossa.

Formazioni saline sulle rive del Grande Lago Salato, Utah – USA. Così appariranno gli oceani tra un paio di miliardi di anni.

Il Sole, l’astro che ha assistito alla nascita della vita e della specie umana su questo pianeta, renderà nel giro di un altro paio di miliardi di anni, ben prima quindi che esaurisca la sua capiente scorta di idrogeno nel suo nucleo, inabitabile questo bel Pallino Blu del cosmo.
Ogni anno sarà impercettibilmente un poco più assolato e caldo del precedente. Anche le dimensioni del Sole visto da quaggiù saranno appena appena più grandi col passare dei secoli, dei millenni.
Alla fine sulla Terra farà così caldo -70° centigradi – che anche gli oceani finiranno per evaporare del tutto lasciando una spessa crosta di sale su gran parte del pianeta.
All’inizio una spessa coltre di vapore acqueo avvolgerà la Terra come un mantello facendo aumentare l’albedo del pianeta permettendogli di riflettere nello spazio la gran parte della radiazione solare.
Al contempo il vapore nell’atmosfera innescherà un effetto serra a valanga che disperderà completamente gli oceani, mentre l’accresciuta radiazione ultravioletta solare dissocerà le molecole di vapore acqueo nei suoi componenti più fondamentali e ne farà aumentare l’energia cinetica.
A quel punto l’aria sarà così calda che la velocità media degli atomi più leggeri supererà la velocità di fuga del pianeta, che così perderà parte della sua atmosfera nello spazio.

Quando tra 2,4 miliardi di anni la Via Lattea e M31, la galassia di Andromeda, inizieranno a scontrarsi probabilmente del Lapislazzulo della Via Lattea non resterà più neppure il  ricordo.


La costante di Hubble e i modelli cosmologici

Probabilmente la scoperta più importante mai fatta in cosmologia è che il nostro Universo si sta espandendo.
Insieme al Principio Copernicano, che non esiste un posto preferito nell’Universo, e il paradosso di Olbers 1  che il cielo è buio di notte, questa è una pietra miliare della moderna cosmologia.
Questa scoperta ha costretto i cosmologi a formulare modelli dinamici dell’universo, il che impone anche l’esistenza di un inizio e una fine per l’Universo.

 

La geometria locale dell'universo è determinata dalla sua densità. media come indicato nell'articolo.  Dall'alto in basso: un universo è sferico se il rapporto di densità media supera il valore critico 1 (Ω> 1, k> 0) e in questo caso si ha il suo successivo collasso (Big Crunch); un universo iperbolico nel caso di un rapporto di densità media inferiore a 1 (Ω <1, k <0) e quindi destinato all'espansione perpetua (Big Rip); e un universo piatto possiede esattamente il rapporto di densità critico (Ω = 1, k = 0). L'universo, a differenza dei diagrammi, è tridimensionale.

La geometria locale dell’universo è determinata dalla sua densità. media come indicato nell’articolo. Dall’alto in basso: un universo è sferico se il rapporto di densità media supera il valore critico 1 (Ω> 1, k> 0) e in questo caso si ha il suo successivo collasso (Big Crunch); un universo iperbolico nel caso di un rapporto di densità media inferiore a 1 (Ω <1, k <0) e quindi destinato all’espansione perpetua (Big Rip); e un universo piatto possiede esattamente il rapporto di densità critico (Ω = 1, k = 0). L’universo, a differenza dei diagrammi, è tridimensionale.

Nel 1916 Einstein formulò la Relatività Generale, la prima coerente descrizione matematica dell’Universo che soppiantò definitivamente la meccanica newtoniana che in condizioni estreme – si pensi al caso della precessione dell’orbita di Mercurio – falliva le sue previsioni.
Basandosi sul potere descrittivo della Relatività Generale nel 1917 Albert Einstein provò a formulare il primo modello cosmologico moderno dell’Universo.
L’universo immaginato da Einstein era statico, aveva un volume finito ma senza limiti, l’analogo quadridimensionale della superficie di una sfera, che è dotata di un’area finita ma illimitata.
Però subito si accorse che un universo statico non era affatto stabile – la sua massa lo avrebbe fatto contrarre fino ad una singolarità 2 – e per questo introdusse nel suo modello  una costante cosmologica repulsiva per controbilanciare l’effetto attrattivo della massa su scala cosmologica.
Ma con o senza una costante cosmologica un modello di universo statico stabile  era impossibile, come dimostrarono indipendentemente il russo Alexander Friedmann nel 1922 e poi il belga George Lemaître.
Fu così che l’idea di un universo statico di volume finito ma illimitato cadde miseramente, è il caso di dire sotto il suo peso.

All’incirca negli stessi anni l’astronomo Edwin P. Hubble  dall’Osservatorio di Monte Wilson  stava studiando quelle che all’epoca venivano ancora chiamate nebulose a spirale e che in quel momento si riteneva facessero parte della nostra Galassia.
Grazie al nuovissimo (allora) Telescopio Hooker da 2,5 metri, Hubble riuscì ad identificare alcune Cefeidi 3 nelle galassie M31 e Triangolo, calcolando così la loro reale distanza 4. Fu evidente fin da subito che le nebulose in questione non appartenevano alla nostra Galassia, demolendo quindi l’opinione allora diffusa tra gli astronomi.
Combinando i suoi lavori con quelli di Humason, di Slipher e della Leavitt 5 fu possibile per Hubble correlare gli spettri delle singole galassie con la loro distanza secondo una precisa legge matematica: z = H0 D / c dove D è la distanza della galassia osservatac è la velocità della luce, H0 è appunto la Costante di Hubble e z lo spostamento verso il rosso osservato.
Fu così evidente che tutti gli spettri mostravano un sistematico spostamento verso il rosso delle righe spettrali proporzionale alla loro distanza; era come se le altre galassie fuggissero da noi o che l’Universo era effettivamente in espansione, come dimostravano indirettamente le equazioni della Relatività Generale che aborrivano un universo statico.
Il valore che nel 1929 Hubble calcolò per la costante di espansione cosmologica Ho era di ben 500 (km/s)/Mpc 6, ovvero una galassia a un milione di parsec aveva una  velocità di recessione pari a 500 chilometri al secondo,  a 2 Mpc di 1000 e così via, un valore altissimo rispetto a quello attuale di appena 74,3 ± 2,1 (km/s)/Mpc che l’osservatorio spaziale infrarosso Spitzer 7  ha calcolato proprio in questi giorni 8.
Il valore calcolato da Hubble fu ritoccato poi al ribasso in più riprese proprio dal suo allievo e successore, Allan Sandage, arrivando fino a un valore comunemente accettato dagli astronomi tra 50 e 100 km al secondo per megaparsec a seconda della scuola di pensiero; qui è proprio il caso di dire che la verità sta in mezzo.

La Costante di Hubble pertanto esprime la rapidità con cui l’Universo si va espandendo. Questa è chiamata costante perché ci si attende che sia la stessa in tutto l’Universo, ma solo nello stesso momento. La Costante di Hubble si suppone infatti che vari nel tempo perché il ritmo con cui l’Universo si espande risente di diversi fattori, questo viene rallentato dall’attrazione gravitazionale di tutta la materia presente nell’Universo, ΩM, e accelera per l’effetto dell’altra costante cosmologica repulsiva Lambda (Λ) 9

Il valore della Costante di Hubble è altrettanto importante per stabilire un’altro dato fondamentale nelle teorie cosmologiche dinamiche: il suo inverso (1 / H0) è infatti chiamato tempo di Hubble, o più comunemente età dell’Universo. Proviamo adesso a calcolarlo per il valore della Costante di Hubble come è stata rivista da Spitzer assumendo che il valore medio di H0 non si sia discostato di molto nel tempo dal suo valore attuale 10:

1/(74,3 km/s)*Mpc  = 1/(74,3 * 3,09E+19) = 4,36E+17 secondi dalla nascita dell’Universo. Siccome ci sono 3,1536E+16 in un miliardo di anni 11, allora l’Universo ha 13,831 miliardi di anni, ora più ora meno.

A questo punto appare evidente che se si vuole sviluppare un modello cosmologico coerente con la nostra realtà occorre tenere presenti alcuni fatti scientifici accertati: l’età e il tasso di espansione sono solo alcuni di questi, mentre la geometria e tutta la materia e l’energia presenti nell’Universo ancora sono oggetto di studio.


Superconduzione nelle stelle di neutroni

La nebulosa HEIC 0609a, i resti di Cas A
Credit: NASA , ESA , and the Hubble Heritage STScI /AURA )-ESA /Hubble Collaboration. Acknowledgement: Robert A. Fesen (Dartmouth College, USA) and James Long (ESA/Hubble)

Forse la vide il Flamsteed, 332 anni fa, come una debole stellina di sesta magnitudine lassù sopra a Caph (β Cas), proprio dove le polveri del piano galattico sono più spesse.

In realtà quella stellina era una  supernova del tipo IIb, ovvero il risultato del collasso di una massiccia supergigante rossa al termine della sua vita, distante 11000 anni luce. Solo l’assorbimento della polvere interstellare lungo il piano galattico ha impedito che fosse più visibile di una debole stellina di appena 6a magnitudine agli osservatori della fine del XVII secolo.
Questa supernova fu riscoperta nel 1947 con i primi radiotelescopi, rivelandosi da subito come la sorgente radio extrasolare più brillante del cielo.
Cas A, questo è il suo nome, continua ancora a stupire gli scienziati dopo tutti questi anni.
Alcune teorie in passato  ipotizzavano che della supernova fosse rimasto un buco  nero, ma forse in questo caso sbagliavano.
Probabilmente quello che resta della supergigante è una stella di neutroni,  una stella così densa che gli elettroni e i protoni riescono a fondersi insieme annullando la loro opposta carica elettrica trasformandosi in neutroni 1.

L’osservatorio spaziale a raggi X Chandra ha scoperto che questa stella di neutroni si è raffreddata di circa il quattro per cento durante un periodo di osservazioni di 10 anni.
Questo calo di temperatura indica che qualcosa di insolito sta accadendo all’interno di Cas A.
In una serie di lavori apparsi su alcune riviste riviste scientifiche più di un anno fa, si è discusso di questo curioso raffreddamento, arrivando alla conclusione che probabilmente la stella di neutroni sta attraversando un periodo in cui i protoni rimanenti nel nucleo della stella sono in uno stato superfluido. In questo caso i protoni -che sono portatori di carica elettrica – creano un superconduttore 2 3.

Questi studi ampliano la nostra conoscenza sugli stati della materia degenere in condizioni limite, che in questo caso porta a creare uno stato di superconduttività a temperature prossime al miliardo di gradi quando sulla Terra si può ottenere la superconduttività solo con materiali e condizioni particolari a temperature bassissime.

Cas A non solo quindi ci dà l’opportunità – rara se non unica – di studiare una stella di neutroni molto giovane e di verificare subito i nostri modelli teorici su questo particolare tipo di oggetti, ma possiamo studiare come si comporta la materia allo stato iperdenso e come si comporta la forza nucleare forte, che lega le particelle subatomiche, in condizioni così critiche.


La materia oscura? Forse solo una bolla?

 Nota: il titolo non è corretto ma per ovvi motivi di indicizzazione ormai non può più essere cambiato. In verità non mi è mai neanche piaciuto anche se ormai è così e basta. Il titolo più corretto sarebbe 

La massa mancante? E se fosse in una bolla?

ringrazio chi mi ha fatto notare l’incongruenza del titolo rispetto al breve articolo. non me ne vogliate per questo. Errare humanum est …

La bolla che avvolge la Via Lattea. Bolle simili avvolgono anche le altre galassie.
Credit: NASA / CXC / M.Weiss; NASA / CXC / Ohio State / A Gupta et al

Una enorme  bolla caldissima, tra 1 e 2,5 milioni di kelvin, con un raggio di almeno 300.000 anni luce avvolge la Via Lattea. La massa di questa bolla è paragonabile da sola a tutta la massa della Galassia.
Questo è il risultato di un recente studio sui dati ripresi dal Chandra X-Ray Observatory della NASA, dell’XMM-Newton dell’ESA e il giapponese Suzaku.

Chandra ha osservato otto sorgenti extragalattiche di raggi X distanti centinaia di anni luce misurando l’assorbimento dell’ossigeno in prossimità del disco galattico, consentendo così di stimarne anche la temperatura di questa bolla.

Studi simili hanno dimostrato che bolle simili circondano anche le altre galassie con temperature che vanno tra i 100.000 e 1 milione di kelvin.
Se questi studi verranno confermarti anche da altre ricerche, l’annoso problema della massa mancante potrebbe avviarsi verso una soluzione, ma ancora ancora non basta.


Riferimenti:
http://chandra.harvard.edu/photo/2012/halo/
A huge reservoir of ionized gas around the Milky Way: Accounting for the Missing Mass? ArXiv 16 agosto 2012

Energia oscura e anisotropia nella radiazione cosmica di fondo

Sono passati almeno 15 anni da  quando è stato scoperto che il nostro Universo subisce una spinta repulsiva che lo sta accelerando, ossia che le sue dimensioni, contrariamente a quanto si era finora supposto, crescono più di quanto la spinta iniziale del Big Bang e al contrario la reciproca attrazione della materia che lo frena possano spiegare.

le varie ipotesi evolutive dell’Universo.
Credit: Il Poliedrico

Nel giugno scorso parlai di un tema particolarmente scottante in cosmologia 1: l’accelerazione dell’espansione dell’universo.
Questo è un fenomeno inflattivo che fu scoperto alla fine del XX secolo e che finora è stato spiegato soprattutto facendo ricorso a una misteriosa energia oscura spiegata prevalentemente in vari modi:
come costante cosmologica, quindi integrata nella natura stessa del tessuto dell’Universo e indicata con la lettera lambda Λ e valore repulsivo fisso wq = −1, o come quintessenza, ovvero una quinta forza fondamentale della natura 2 che può assumere una natura attrattiva o repulsiva a seconda del rapporto tra energia cinetica ed energia potenziale nell’universo.

[table “14” not found /]
Tabella 1

Stando alle teorie della quintessenza, questa divenne repulsiva – ossia cambiò stato come l’acqua diviene ghiaccio a 0° C. – circa 10 miliardi di anni fa a seguito dell’espansione iniziale dell’Universo.
Qui i valore repulsivo della quintessenza varia col variare delle condizioni locali nell’universo, ovvero questa avrà valori diversi tra i super ammassi di galassie dove la materia è concentrata e gli spazi di vuoto che li separano, come una ragnatela e soprattutto, come è ovvio, il suo valore cambia nel tempo.

Un team di astronomi dell’università di Portsmouth – R. CrittendenR. NicholA. J. Ross  –  e dell’università Ludwig Maximilians di Monaco di Baviera – T. Giannantonio – ha riproposto uno studio del 2008 3 4 sui dati del satellite Wilkinson Microwave Anisotropy Probe (WMAP) riguardante l’effetto Sachs-Wolfe integrato 5.
Questo nuovo studio 6 tiene conto di nuovi dati e nuovi metodi di indagine per venire incontro alle obiezioni sollevate dagli altri cosmologi 7 che sostanzialmente però non mutano il quadro emerso dalla precedente ricerca che conferma un valore specifico per il modello Lambda-CDM pari a w = −1 per redshift superiori  a 1.

L’effettto Sachs-Wolfe integrato.
Credit: Istituto di astronomia dell’Università delle Hawaii

Fu proprio R. Crittenden insieme a  Neil Turok nel 1996 a proporre di cercare nell’anisotropia secondaria della radiazione cosmica di fondo le prove della presenza di energia oscura nell’Universo 8 9.
I fotoni della CMB inizialmente isotropi avrebbre risentito dell’influenza gravitazionale delle grandi concentrazioni di materia diventando ovviamente leggermente più freddi per effetto della curvatura dello spazio locale ma avrebbero acquistato più energia (effetto blueshift) riscaldati dalla stessa materia autrice della curvatura. Questi due effetti in assenza di energia oscura si controbilancerebbero quasi esattamente – si devono comunque  tener conto anche di altri effetti come la focalizzazione gravitazionale, l’effetto Sunyaev-Zel’dovich etc. – ma l’energia oscura che dilata lo spazio consentirebbe alla CMB rilevata di avere un’impronta energetica leggermente più alta là dove le concentrazioni di massa l’hanno riscaldata.
Quindi la presenza di energia oscura si potrebbe rilevare confrontando le concentrazioni di materia conosciute nell’universo locale con le impronte delle fluttuazioni della CMB.
E in effetti importanti correlazioni pare che ci siano, tanto che il team di Portsmouth e Monaco parla che il  99,996% di queste sia da imputarsi all’energia oscura.

Comunque sia, il capitolo Energia Oscura non è affatto finito.  Il team di Crittenden si dice sicuro dei risultati ma manca la verifica di altri gruppi di ricerca e l’immancabile controrisposta dei cosmologi scettici. Ma soprattutto com’è fatta questa Energia Oscura?


Altri riferimenti:
http://www.ras.org.uk/news-and-press/219-news-2012/2167-dark-energy-is-real-say-portsmouth-astronomers

http://www.ifa.hawaii.edu/cosmowave/supervoids/

 

PTF 11kx, un mistero da risolvere

PTF 11kx è il puntino blu in questa galassia a 600 milioni di anni luce di distanza.
Credit: BJ Fulton (Las Cumbres Osservatorio in rete Telescope Globale)

Le supernovae di tipo Ia sono degli ottimi indicatori di distanza su scala cosmica 1. È merito delle loro esplosioni se è stato possibile capire quanto sia enorme il nostro Universo.
Eppure di tutte le supernovae finora osservate non ce n’era una di cui si possedesse qualche indizio sul sistema progenitore, tutto era basato sull’intuizione teorica. Finora …
Infatti i ricercatori del Palomar Transient Factory, attraverso un complesso sistema di allerta computerizzato collegato al telescopio robotizzato Samuel Oschin da 120cm è riuscito a cogliere indizi sul sistema che ha dato origine alla supernova PTF 11kx.

 PTF 11kx è una supernova di tipo Ibis esplosa in una galassia a 600 milioni d anni luce (z = 0.04660) di distanza nella costellazione Lince 2 scoperta il 16 gennaio 2011.
Quando fu scoperta, la supernova mostrava strane righe del calcio il che è abbastanza insolito, tanto che i ricercatori del PTF allertarono subito i loro colleghi dell’Osservatorio Keck alle Hawaii.

PTF 11kx
Credit:astro.berkeley.edu

Presto gli astronomi del Keck si accorsero che il guscio di polveri attorno alla supernova responsabile delle righe di assorbimento del calcio era troppo lento per essere prodotto da una esplosione di supernova ma troppo velocemente per essere frutto del semplice vento stellare.
L’unica spiegazione plausibile era che questo guscio avesse avuto origine da una nova preesistente a PTF 11kx e che stesse rallentando quando fu investito dall’esplosione di supernova.
Nei giorni successivi il segnale del calcio stava scomparendo, quando 58 giorni dopo rieccolo apparire, sintomo evidente che i gusci concentrici erano evidentemente più di uno.
A questo punto era chiaro che il progenitore di PTF11kx era un sistema binario composto da una nana bianca e una supergigante rossa.

Altri studi non sono mai stati conclusivi sui sistemi progenitori di supernova. Una delle supernovae più precoci mai avvistate nonché  la più vicina Ia dal 1972, SN 2011fe, o se preferite PTF 11kly visto che fu scoperta dallo stesso team della nostra eroina e con gli stessi mezzi,  non ha mostrato particolari segnali che potessero dirci quali erano le condizioni fisiche preesistenti al momento dell’esplosione, ponendo limiti assai restrittivi sui possibili sistemi originari 3

PTF 11kx è un bel rompicapo: a un sistema binario come quello ipotizzato dagli astronomi non è insolito produrre più eruzioni di nova: nella nostra Galassia abbiamo RS Ophiuchi a non più di 5000 anni luce che lo fa abbastanza spesso (6 volte negli ultimi 114 anni, l’ultimo nel 2006) e sappiamo bene come funziona: una nana bianca sottrae materia dalla sua compagna gigante rossa per effetto mareale; la materia forma quindi un disco di accrescimento intorno alla nana bianca finché in un punto non si raggiungono temperature e densità tali da innescare una fusione nucleare. l’esplosione susseguente disperde il disco di accrescimento e il ciclo si ripete.
Quindi c’è da chiedersi come questa volta si sia potuto accumulare tanta materia fino al limite di Chandrasekhar di quasi 1,4 masse solari nel sistema progenitore fino a produrre una supernova.

Un mistero che se risolto potrebbe svelarci ancora molte cose sulle origini delle Candele Cosmiche.

Tre piccoli fotoni svelano la natura dell’Universo

Tanto tempo fa in una galassia lontana lontana …

… tre piccoli fotoni gamma – di quelli che vengono prodotti dal collasso di una stella molto grande – partirono per un lungo viaggio attraverso le sterminate praterie cosmiche promettendosi di non perdersi mai di vista …

Tre piccoli fotoni in vacanza 🙂
Credit: Il Poliedrico

Il viaggio dei tre fotoni è durato oltre 7 miliardi di anni, e per quanto sembri banale, ci ha svelato molte cose sulla natura del Cosmo che neppure il più sofisticato acceleratore di particelle probabilmente potrebbe mai dirci 1.

Ma facciamo un passo indietro.
Einstein e la sua Relatività Generale ci hanno spiegato che lo Spazio e il Tempo sono in realtà un’unica cosa e che la materia curva questo tessuto sotto il suo peso a qualsiasi scala la si guardi.
Al contrario, la Meccanica Quantistica ci spiega che a scale molto piccole come la scala di Panck – un  miliardesimo di miliardesimo del diametro di un elettrone.  – il tessuto dello spazio-tempo non è lineare come vuole la Relatività Generale ma diventa indistinto e spumoso con 5, 6 7 dimensioni strettamente arrotolate su sé stesse, fino a 15 o 20 per alcune teorie quanto-relativistiche.
È infatti questo il vero scoglio che rende inconciliabili la Relatività Generale e la Meccanica Quantistica: il modo di descrivere il tessuto dello spazio-tempo.

Diversi anni fa un brillante ricercatore italiano, Giovanni Amelino-Camelia, fisico teorico alla Sapienza di Roma, propose di un interessante modo di indagare nell’infinitamente piccolo: guardare verso l’infinitamente grande.
Il concetto di fondo è che gli effetti microscopici possono essere misurati più facilmente su scale macroscopiche. Ad esempio gli effetti microscopici del tessuto dello spazio-tempo sui nostri tre fotoni dovrebbero, per effetto dell’enorme viaggio percorso, essere amplificati fino a renderli rilevabili con gli strumenti oggi a disposizione.
In pratica, la luce si dovrebbe disperdere in diversi colori mentre compie il suo viaggio attraverso l’universo dal tessuto dello spazio, così come si diffonde nelle diverse lunghezze d’onda quando passa attraverso la struttura cristallina di un prisma.

 Nel maggio 2009 il Fermi Gamma Ray Space Telescope intercettò uno di questi lampi gamma registrando appunto i nostri tre piccoli fotoni.
Robert Nemiroff 2  astrofisico presso il Michigan Technological University, ha esaminato questi dati scoprendo appunto le tracce del passaggio dei tre quanti ad altissima energia – oltre 1 Gev, due all’interno dello stesso millisecondo, e un terzo ad appena un altro millisecondo dietro ai primi due.
Ora è improbabile che i fotoni siano stati emessi da lampi gamma diversi o da tempi diversi dello stesso fenomeno, per cui è ragionevole credere che i tre siano stati generati simultaneamente dallo stesso fenomeno, pertanto questi hanno percorso 7 miliardi di anni luce senza venire dispersi o diffusi dalla materia ordinaria – che ne avrebbe inevitabilmente alterato l’impronta energetica – percorrendo liberamente tutto lo spazio tra la Terra e la sorgente.
E questo è esattamente il tipo di radiazioni che il fisico italiano proponeva di cercare e studiare.

I risultati di Nemiroff pubblicati su Physical Review Letters 3 pongono un limite agli effetti dispersivi dello spazio dovuti alla schiuma prevista dalle teorie della Relatività Quantistica fino a energie e scale prossime alla massa di Planck.
Un limite che una futura Teoria del Tutto non può non tenerne conto.
A meno di incredibili coincidenze, ecco come tre piccoli fotoni possono aiutare a capire la natura più intima dell’Universo.


Altri riferimenti:

 

Materia esotica paramagnetica

Sono molte le nozioni scientifiche che abitualmente diamo per scontate. Pensiamo che esse siano vere ovunque nell’Universo – il che è sostanzialmente vero – ma non teniamo conto che in questo ci possano essere delle condizioni limite in cui ciò che sappiamo è incompleto.

In prossimità di una stella di neutroni la materia potrebbe essere ancora più esotica di quanto si pensi. Qui il magnetismo potrebbe prevalere sull’elettrostatica che normalmente governa la dinamica molecolare.

Eppure ci siamo già passati. Alla fine del 19° secolo Lord Kelvin si diceva convinto che si era scoperto tutto lo scibile, mentre subito dopo i concetti di spazio e di tempo assoluti crollavano sotto i colpi della Relatività e l’infinitamente piccolo veniva riscritto dalla Meccanica Quantistica.
Adesso proprio nel campo del quasi infinitamente piccolo, un settore che pensavamo di conoscere bene, pare che le nostre conoscenze siano incomplete.
Trygve Helgaker dell’Università di Oslo e il suo team hanno provato a simulare al computer quello che accade alla materia quando è sottoposta a campi magnetici potentissimi che possono essere generati solo dal nucleo collassato di una stella, una nana bianca o una stella di neutroni.

I legami chimici sono quelle forze elettrostatiche che consentono agli atomi di aggregarsi  fra loro e creare quelle strutture più complesse che chiamiamo molecole.  La forza dei legami chimici varia notevolmente, ci sono i legami forti come i legami covalenti e i legami ionici, e i legami deboli, come le interazioni dipolo-dipolo, che al momento non ci interessano affatto.
Il legame più semplice conosciuto e diffuso  nell’universo, è ovvio, riguarda due atomi dell’elemento più semplice che c’è, l’idrogeno. In questo  caso si parla di molecola di idrogeno o idrogeno molecolare, simbolo H2.
Questo è un legame covalente omopolare, dove i due nuclei atomici – in questo caso due protoni, di carica elettrica positiva – condividono due elettroni – di carica elettrica negativa. La carica elettrostatica quindi è nulla e la molecola è stabile.
In questo caso gli elettroni occupano lo stesso orbitale e, per il Principio di esclusione di Pauli, hanno spin opposti.
Helgaker e il suo team, avvalendosi di complesse simulazioni computerizzate, si sono accorti che una molecola di idrogeno in presenza di enormi campi magnetici dell’ordine di 100000 Tesla, che si possono appunto trovare in prossimità di una nana bianca o una stella di neutroni, si comporta in modo alquanto bizzarro, rivelando una nuova forma del legame covalente finora sconosciuto.
In questo caso la molecola di idrogeno si orienta parallelamente alle linee del campo magnetico, e il legame chimico tra i due atomi diventa più stretto e più stabile.
Nel caso in cui uno degli elettroni venga poi eccitato fino a un livello di energia che normalmente romperebbe il legame, come ad esempio dopo aver assorbito un fotone, la molecola non fa altro che riorientarsi perpendicolarmente al campo magnetico, ma curiosamente resta intatta.

 la dinamica dei legami molecolari in un ambiente comune (in inglese).

Questo avviene perché il campo magnetico riallinea lo spin degli elettroni in una unica direzione che è normalmente sempre antiparallelo quando due elettroni occupano lo stesso orbitale. Ma il Principio di esclusione di Pauli impedisce a due elettroni identici di occupare lo stesso orbitale, per cui un elettrone è costretto a cambiare posizione e passare allo stato quantico successivo, che è però un orbitale antilegame 1.
In un ambiente normale la molecola di idrogeno si dissocierebbe quasi subito nei suoi componenti fondamentali, invece qui l’intensità del campo magnetico riesce a mantenerla curiosamente stabile. I ricercatori hanno chiamato questo nuova forma di legame legame paramagnetico.

Il legame paramagnetico consentirebbe alle molecole di idrogeno di esistere anche in ambienti estremi come lo sono le sottilissime e caldissime atmosfere di questi nuclei stellari.
Dovrebbe essere quindi possibile osservare questa nuova forma della materia  studiando gli spettri di questi oggetti ipermagnetici in cerca di una loro particolare firma nelle righe spettrali che dovrebbe essere diversa dalle altre finora conosciute, perché il riposizionamento di una molecola eccitata nel campo magnetico deve comunque lasciare una sua impronta.
Se  Helgaker e i suoi hanno ragione dovremmo rivedere le nostre conoscenze sulla materia sottoposta a condizioni estreme.
Infatti i nuclei stellari collassati non si fermano certo a generare solo – si fa per dire – 100000 Tesla: molte stelle di neutroni raggiungono campi magnetici fino a 10000 volte più intensi.
Potremmo scoprire che la materia si comporta in modo ancora diverso e più esotico, magari campi magnetici ancora più intensi di quelli fin qui studiati non si limitano ad alterare gli orbitali ma anche la dinamica dei nuclei atomici fino a creare nuovi tipi di materia non ancora conosciuti.