Il mistero dei barioni mancanti

L’ammasso di galassie nella Chioma di Berenice (Abell 1656) – Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA). Acknowledgment: D. Carter (Liverpool John Moores University) and the Coma HST ACS Treasury Team.

Nel 1933 l’astrofisico svizzero Fritz Zwicky, del California Institute of Technology, applicò un metodo di indagine chiamato teorema del viriale all’ammasso di galassie della  Chioma e ottenne le prime prove dell’esistenza di una importante discrepanza tra la materia visibile e la massa misurata dell’ammasso.
Zwicky stimò che la massa totale dell’ammasso basata sui moti delle galassie vicino al suo bordo rispetto ad una stima in base al numero delle galassie totale dell’insieme era circa 400 volte più alta.
La gravità stimata delle galassie visibili nel ammasso sarebbe stata troppo piccola per giustificare la velocità di queste e quando ulteriori osservazioni confermarono in seguito i risultati di Zwicky, per i cosmologi si pose seriamente il “problema della massa mancante”.
Infatti a questo punto se si voleva mantenere intatto Il concetto dell’inverso del quadrato della distanza ( 1/R2 dove R è la distanza) che è la base della teoria della gravitazione, nasceva un bel problema scientifico: come giustificare questa differenza? Cos’è questa materia che ha una importante influenza gravitazionale ma che è di fatto invisibile alle analisi ottiche/elettromagnetiche?

La galassia UGC 7321, un ottimo esempio di galassia cxircondata da un alone di materia oscura. Rielaborazione immagine:  Il Poliedrico

La galassia UGC 7321, un ottimo esempio di galassia circondata da un alone di materia invisibile.
Rielaborazione immagine:
Il Poliedrico

Il Modello Cosmologico Standard suggerisce che tutto l’Universo è composto per il 4,9% da materia barionica – neutroni, protoni, elettroni (anche se questi non sono proprio barioni) – ordinaria, il 26,8% da una forma di materia totalmente sconosciuta che però produce effetti gravitazionali e per il 68,3% da energia oscura l2 l3.
Ma se spiegare quel 26,8% di materia oscura è già un grosso problema, figuriamoci spiegare che almeno la metà della massa barionica richiesta dal Modello Cosmologico Standard non si trova!
Certo questo è un bel rompicapo nel rompicapo, è come dover comporre un puzzle con tessere che sono a loro volta altri puzzle da comporre.

Oggetti di natura barionica fredda che non emettono luce possono essere  pianeti, nane brune o anche dei semplici granelli di polvere, ma mentre una nube interstellare copre vaste regioni di spazio, un corpo massiccio di dimensioni megametriche 1 intercetterà di certo meno luce di una nube grande svariati anni luce. Obbiettivamente però è difficile che una massa significativamente importante 2 sia dispersa in miliardi di corpi massicci troppo piccoli per emettere o assorbire luce in maniera apprezzabile.
Questi oggetti massicci sono chiamati MACHO (MAssive Compact Halo Object) ma secondo le stime migliori possono rappresentare appena il 20% della massa totale di una galassia 3, certo rappresentano una parte importante della massa di una galassia, ma comunque sono sempre un po’ troppo pochi per giustificare la parte non rilevata di massa barionica.

Questa è una simulazione computerizzata dell'aspetto di circa 2 miliardi di anni di spazio che mette in evidenza lo WHIM. Credit: Matthew Hall, NCSA.

Questa è una simulazione computerizzata dell’aspetto di circa 2 miliardi di anni di spazio che mette in evidenza lo WHIM.
Credit: Matthew Hall, NCSA.

Alcuni studi recenti inoltre mostrano che le singole galassie sono al centro di gigantesche bolle di gas ionizzato 4 di massa paragonabile alla galassia ospite. Data la rarefazione estrema, questo gas è ionizzato a temperature comprese tra i centomila e un milione di kelvin, quindi è quasi impossibile da vedere, visto che a quelle temperature le righe spettrali degli atomi dominano nei Raggi X.
Probabilmente la sua origine è legata ai venti stellari  della galassia  e modellato almeno in parte dal campo magnetico globale di questa.
Questo è lo WHIM (Warm-Hot Intergalactic Medium), ovvero mezzo intergalattico caldo, di cui le bolle galattiche sono solo una parte, che si estende tra le galassie dando all’Universo l’aspetto di  ragnatela tridimensionale.

Forse è presto per dirlo, ma con i MACHO e lo WHIM almeno la tessera del puzzle che rappresenta la massa barionica mancante pare sia ricomposta e che in fondo questa sia stata ritrovata.
Adesso resta che capire cosa sia l’altro 84,5% della massa dell’Universo che chiamiamo Materia Oscura e che ancora sfugge alla nostra comprensione.
Sotto a chi tocca.


PTF 11kx, un mistero da risolvere

PTF 11kx è il puntino blu in questa galassia a 600 milioni di anni luce di distanza.
Credit: BJ Fulton (Las Cumbres Osservatorio in rete Telescope Globale)

Le supernovae di tipo Ia sono degli ottimi indicatori di distanza su scala cosmica 1. È merito delle loro esplosioni se è stato possibile capire quanto sia enorme il nostro Universo.
Eppure di tutte le supernovae finora osservate non ce n’era una di cui si possedesse qualche indizio sul sistema progenitore, tutto era basato sull’intuizione teorica. Finora …
Infatti i ricercatori del Palomar Transient Factory, attraverso un complesso sistema di allerta computerizzato collegato al telescopio robotizzato Samuel Oschin da 120cm è riuscito a cogliere indizi sul sistema che ha dato origine alla supernova PTF 11kx.

 PTF 11kx è una supernova di tipo Ibis esplosa in una galassia a 600 milioni d anni luce (z = 0.04660) di distanza nella costellazione Lince 2 scoperta il 16 gennaio 2011.
Quando fu scoperta, la supernova mostrava strane righe del calcio il che è abbastanza insolito, tanto che i ricercatori del PTF allertarono subito i loro colleghi dell’Osservatorio Keck alle Hawaii.

PTF 11kx
Credit:astro.berkeley.edu

Presto gli astronomi del Keck si accorsero che il guscio di polveri attorno alla supernova responsabile delle righe di assorbimento del calcio era troppo lento per essere prodotto da una esplosione di supernova ma troppo velocemente per essere frutto del semplice vento stellare.
L’unica spiegazione plausibile era che questo guscio avesse avuto origine da una nova preesistente a PTF 11kx e che stesse rallentando quando fu investito dall’esplosione di supernova.
Nei giorni successivi il segnale del calcio stava scomparendo, quando 58 giorni dopo rieccolo apparire, sintomo evidente che i gusci concentrici erano evidentemente più di uno.
A questo punto era chiaro che il progenitore di PTF11kx era un sistema binario composto da una nana bianca e una supergigante rossa.

Altri studi non sono mai stati conclusivi sui sistemi progenitori di supernova. Una delle supernovae più precoci mai avvistate nonché  la più vicina Ia dal 1972, SN 2011fe, o se preferite PTF 11kly visto che fu scoperta dallo stesso team della nostra eroina e con gli stessi mezzi,  non ha mostrato particolari segnali che potessero dirci quali erano le condizioni fisiche preesistenti al momento dell’esplosione, ponendo limiti assai restrittivi sui possibili sistemi originari 3

PTF 11kx è un bel rompicapo: a un sistema binario come quello ipotizzato dagli astronomi non è insolito produrre più eruzioni di nova: nella nostra Galassia abbiamo RS Ophiuchi a non più di 5000 anni luce che lo fa abbastanza spesso (6 volte negli ultimi 114 anni, l’ultimo nel 2006) e sappiamo bene come funziona: una nana bianca sottrae materia dalla sua compagna gigante rossa per effetto mareale; la materia forma quindi un disco di accrescimento intorno alla nana bianca finché in un punto non si raggiungono temperature e densità tali da innescare una fusione nucleare. l’esplosione susseguente disperde il disco di accrescimento e il ciclo si ripete.
Quindi c’è da chiedersi come questa volta si sia potuto accumulare tanta materia fino al limite di Chandrasekhar di quasi 1,4 masse solari nel sistema progenitore fino a produrre una supernova.

Un mistero che se risolto potrebbe svelarci ancora molte cose sulle origini delle Candele Cosmiche.

Il mistero delle supernovae Ia

La Supernova 1572 (la Nova di Tycho), una supernova di tipo Ia osservata nel 1572 dall'astronomo danese Tycho Brahe. (credit: NASA/CXC/JPL-Caltech/Calar Alto O. Krause et al.)

Tutto quello che sappiamo del nostro Universo lo abbiamo scoperto grazie all’analisi delle onde elettromagnetiche (luce visibile, onde radio, raggi X e gamma) che ci giungono dallo spazio, da altre stelle, galassie e nebulose lontanissime.
Ad esempio per sapere le dimensioni del cosmo si usano – superato il limite parallattico, attualmente circa 100 anni luce – le candele standard, ossia quegli oggetti di cui sono note le luminosità assolute a cui si applica poi la semplice legge dell’inverso del quadrato della distanza 1.
Per le zone di questa galassia e per poche altre galassie vicine si usa un tipo particolare di stelle variabili chiamate Cefeidi. Le Cefeidi sono stelle giganti che hanno una particolarità di inestimabile valore per un astronomo: il loro ciclo di variabilità è strettamente connesso alla loro luminosità: per cui analizzando la curva di luce di questo tipo di variabili si conosce automaticamente anche la luminosità assoluta, esattamente quello che occorre per essere una candela standard.
Il meccanismo fisico che è alla base della variabilità di una Cefeide è ben noto, ma lo stesso non può dirsi dell’altra candela standard usata in cosmologia: le Supernovae di Tipo Ia, usate dove non è possibile individuare una Cefeide.

Gli scenari possibili per la formazione di una supernova di tipo Ia

Le supernovae sono stelle che esplodono al termine del loro ciclo vitale generando una luminosità migliaia di volte più grande della galassia a cui appartengono, e quelle del tipo Ia – lo si desume anche in questo caso dalla curva di luce e dallo spettro elettromagnetico che emettono – hanno la particolarità di essere tutte molto simili come luminosità assoluta (magnitudune circa -19,3 per tutte), il che le rende ottime candele standard per le distanze cosmologiche, ossia al di fuori del nostro Gruppo Locale.
Per certo di questa classe di supernovae sappiamo che sono il risultato di un processo fisico in cui alcune nane bianche o stelle di neutroni 2 per qualche meccanismo finora poco chiaro,superano il limite di Chandrasekhar – che è quasi 1,4 masse solari. Questo è il limite oltre al quale una stella degenere non può andare in quanto gli stessi atomi (sarebbe più corretto dire elettroni) non possono reggere il  peso della stella senza il contributo della pressione radiativa generata dalle reazioni di fusione nucleare. Quando questo limite viene superato, i nuclei atomici ipercompressi riprendono a fondersi ad un ritmo impressionante liberando enormi quantità di energia che in pochi minuti portano alla deflagrazione della stella, indipendentemente dalla sua composizione chimica o dimensione di partenza. L’unico elemento costante è il limite della massa di Chandrasekhar che rende tutte queste supernovae uguali nelle esplosioni e nella luminosità.
Quello che appunto non è del tutto chiaro è come una stella degenere come una nana bianca o una stella di neutroni possa riacquistare abbastanza massa da deflagrare in supernova.
La tesi più comune finora accettata è quella del sistema binario stretto: la stella degenere strappa letteralmente la materia alla sua compagna gigante rossa (praticamente lo stesso meccanismo delle novae) fino a superare la massa limite.
Ma questo meccanismo però richiede che il trasferimento di materia tra la stella cannibalizzata e la stella degenere sia sufficientemente rapido da superare la massa critica prima che si sviluppi una nova 3, ma non troppo veloce da consentire alla stella degenere di rigenerarsi in una gigante rossa.
Il risultato di questo modello richiede quindi una serie di parametri da rispettare (velocità orbitale, eccentricità, distanza etc.) da risultare complicato avverarsi.
Inoltre ci si dovrebbe attendere di trovare almeno i resti della stella compagna della supernova, ma invece questi finora non sono mai stati ritrovati.
Lo scenario rimanente per spiegare le supernovae Ia è quello che chiama in causa due nane bianche in orbita reciproca che decade. L’orbita stretta sottrae energia al sistema doppio sotto forma di onde gravitazionali fino a che le stelle entrano in contatto e si fondono in un unico corpo che è destinato subito dopo a esplodere.
O no?
Anche questo scenario comporta altri diversi problemi mentre cerca di risolvere le lacune del primo.
Innanzitutto il problema della massa finale, che probabilmente dopo la fusione delle due nane bianche potrebbe superare il limite di Chandrasekhar di 1,4 masse solari dando luogo anche a una più massiccia deflagrazione, ma potrebbe anche generare un oggetto massiccio noto come le pulsar-millisecondo, dove la stella di neutroni degenere finale ha una rotazione abbastanza elevata da contrastare la compressione gravitazionale che innseca le reazioni di fusione nucleare 4. Tutte le pulsar perdono energia con la radiazione di dipolo magnetico, in questo caso accade che la rotazione diviene insufficiente a resistere al peso della stella degenere che così esplode.
Con questo meccanismo infatti rimane insoluto un grave problema: come riuscire a spiegare come esplosioni di stelle degeneri di diversa massa -anche se simile –  possano generare tutte la medesima luminosità assoluta, oppure si dovrebbe considerare che questa misura fosse in qualche modo male interpretata.

Certo che il mistero delle supernovae di tipo Ia rimane irrisolto, anche se studi in questo senso sono stati portati avanti  da due ricercatori, Dan Maoz 5 e Filippo Mannucci 6, che dimostrano come lo scenario più probabile per spiegare questa classe di supernovae è quasi sicuramente il modello della fusione di due nane bianche.
la loro analisi in sostanza parte dai problemi degli attuali modelli teorici e il tasso di supernovae Ia scoperte in relazione all’età e al tipo di popolazione stellare ospite. Quello che ne è emerso è che il secondo scenario, cioè quello della fusione di due nane bianche,  è il più probabile per spiegare il numero delle supernovae scoperte senza negare che anche il primo scenario, quello della cattura di materia da una compagna, può aiutare a spiegare il meccanismo di produzione  delle supernovae Ia, aprendo così la strada ad ancora altri problemi.
Per i particolari del loro studio vi rimando all’articolo su Arxiv 7, che saprà senz’altro illustrarvi meglio i risultati delle loro indagini.

L’Anomalia del Pioneer: mistero risolto?

Questo è un ottimo articolo scritto e pubblicato da Sabrina Masiero per TuttiDentro. L’ho riportato qui per mostrare – ancora una volta – come una ricerca scientifica seria possa portare a conclusioni logiche e inaspettate, piuttosto che scomodare improbabili alieni che manomettono le sonde come dichiararono un anno fa riprendendo i deliri di un sedicente esperto 1 i giornali di mezzo mondo. Anzi, ora più che mai serve un risveglio scientifico nelle nuove generazioni, perché capiscano l’importanza del ragionamento e dell’indipendenza del pensiero per non commettere gli stessi errori delle generazioni precedenti..

Il fly-by del Pioneer 10 con il pianeta Giove in un’immagine fantastica. Credit: NASA.

Per oltre un decennio, l’anomalia del Pioneer è stata un problema aperto, una sorta di domanda senza risposta nell’ambito della fisica. L’esistenza di un’apparente accelerazione costante dovuta al Sole registrata sulle due sonde spaziali Pioneer 10 e 11 fu rilevata per la prima volta nel 1998 da un team di scienziati del Jet Propulsion Laboratory (JPL) di Pasadena, (California) e pubblicata sul Phusics Revew Letter 2 L’anno successivo questa anomala accelerazione fu studiata in maggior dettaglio, ottenendo per essa un valore costante pari a (8.74 ± 1.33) × 10 ^(− 10) m/s ^2 3

Gli scienziati e i tecnici della NASA monitorarono costantemente la posizione delle due sonde spaziali utilizzando l’effetto Doppler. In particolare, l’astronomo John Anderson negli anni Ottanta ideò un algoritmo matematico in grado di utilizzare le trasmissioni radio tra le sonde Pioneer e il nostro pianeta per studiare gli effetti gravitazionali nelle regioni periferiche del nostro sistema solare interno (interno nel senso che ci limitiamo a considerare il nostro sistema solare costituito solo dai pianeti e trascuriamo tutto quello che sta oltre l’orbita di Nettuno, che fa ancora parte del nostro Sistema Solare e che comprende la Fascia di Kuiper e la Nube di Oort). Durante queste misurazioni, si osservò un’anomalia nei calcoli, una sorta di discrepanza tra l’effetto Doppler previsto dall’algoritmo di Anderson e la misurazione dei segnali radio delle due sonde. Da questa discrepanza emerse che i due Pioneer sembravano decelerare rispetto a quanto previsto dall’algoritmo di Anderson.
Per spiegare la decelerazione, si ipotizzò la presenza di grosse quantità di materia oscura, mai stata rilevata, nella zona più esterna del sistema solare, cioè al di là della fascia principale degli asteroidi, che tendeva a rallentare le due sonde. Un’altra ipotesi fu quella di ricorrere alla teoria del MOND (MOdified Newtonian Dynamics), ossia una teoria che afferma che la legge di gravitazione universale potrebbe non essere in realtà così universale e applicabile a tutti gli oggetti dell’universo come finora si è ipotizzato. In questa teoria viene introdotta una nuova costante, a(0), che ha le dimensioni di un’accelerazione e che modifica la legge di gravitazione universale di Newton per valori di accelerazioni molto piccoli. Questo comporta che la meccanica classica, quella newtoniana, funziona solo nel limite di accelerazioni grandi, superiori ad a(0), mentre per accelerazioni molto più piccole di a(0) interviene questa teoria modificata.
Sia la materia oscura che la teoria del MOND non riuscivano a spiegare questa discrepanza rilevata. Non erano state comunque escluse fattori tecnici, come un guasto o un malfunzionamento o un’anomalie della strumentazione delle sonde.

Si pensò allora che responsabile di questa decelerazione fosse il reattore SNAP-19 carico di qualche chilo di Plutonio 238 che alimentava entrambe le sonde e che poteva venir irradiato nello spazio in direzione opposta al moto delle sonde, producendo il rallentamento misurato. Ma si constatò che questo non poteva sussistere, dato che la spinta prodotta dal reattore avrebbe dovuto diminuire nel corso del tempo, anno dopo anno, non nel modo calcolato dai ricercatori.

 

Rappresentazione artistica del Pioneer 11 mentre compie il suo fly-by con Saturno. Credit NASA. Disponibile sul sito: Interstellar Spaceships and probes: http://privat.bahnhof.se/wb671350/space.html

In un lavoro pubblicato da F. Francisco  dell’Instituto  de  Plasmas  e  Fus˜ao  Nuclear, Instituto  Superior  Técnico di Lisbona e dai suoi colleghi il 27 marzo 2011 4 si afferma che i calcoli di Anderson degli anni Ottanta non erano corretti, perché non tenevano conto del calore riflesso dalle diverse parti che costituiscono le due sonde (effetti termici, come vengono chiamati). La radiazione generata dal reattore viene irradiata nello spazio ma anche riflessa dalle diverse componenti delle due sonde.
Utilizzando un nuovo algoritmo per calcolare i riflessi di luce su un oggetto tridimensionale, il team di Francisco è stato in grado di calcolare la quantità di calore emesso dal compartimento dell’equipaggiamento e a tener conto dei riflessi della radiazione termica contro la parete posteriore dell’antenna principale. Dato che quest’ultima punta verso il Sole e le sonde si stanno allontanando da esso, il calore riflesso rallenterebbe le due sonde Pioneer. Il valore della decelerazione, o anomalia del Pioneer, tornerebbe con quest’ultimo valore.

 

Nella parte conclusiva dell’articolo si legge: “With the results presented here it becomes increasingly apparent that, unless new data arises, the puzzle of the anomalous acceleration of the Pioneer probes can finally be put to rest” (traduzione: “Con i nostri risultati presentati qui, diventa sempre più chiaro che, a meno che non emergano nuovi dati, il mistero dell’accelerazione anomala delle sonde Pioneer possa essere considerato risolto“).

La rappresentazione delle traiettorie delle due sonde Pioneer 10 e 11. Credit: NASA.

Le due sonde Pioneer 10 e 11 furono lanciate quasi quarant’anni fa, la prima il 2 marzo 1972 e la seconda il 5 aprile 1973. Il Pioneer 10 fu la prima sonda spaziale ad oltrepassare la fascia principale degli asteroidi compresa tra Marte e Giove (con oltre 35 000 oggetti osservati) e la prima ad avere un incontro ravvicinato con Giove, il pianeta più grande del nostro sistema solare.
L’ultimo segnale dalla sonda Pioneer 10 raggiunge la Terra il 23 gennaio 2003 e numerosi furono i tentativi successivi di ripristinare il contatto, l’ultimo dei quali tra il 3 e il 5 marzo 2006, senza alcun risultato. Il Pioneer 10 si sta muovendo attualmente in direzione della stella Albebaran, una gigante rossa che forma l’occhio del Toro nell’omonima costellazione. Aldebaran è a circa 68 anni luce di distanza dal Sole (un anno luce è la distanza che percorre la luce in un anno alla velocità di quasi 300 000 chilometri al secondo) e il Pioneer impiegherà oltre due milioni di anni per raggiungerla.

Il Pioneer 11 fu la prima sonda a compiere un fly by con Saturno nel 1979. Non sono stati più possibili più contatti con essa dal 30 settembre 1995, cioè da quando non si è più trovata lungo la linea di vista con la Terra. Il Pioneer 11 si muove nella direzione individuata dalla Costellazione dell’Aquila, che si trova a nord-est della costellazione del Sagittario, e transiterà vicino ad una di queste stelle dell’Aquila fra circa 4 milioni di anni 5

E’ sicuramente un risultato interessante quello ottenuto da Francisco e i suoi colleghi che verrà ora preso in considerazione dalla comunità scientifica. Se tale conclusione verrà accettata, avremmo compiuto un passo in avanti nell’identificare un effetto di cui si dovrà tener conto nelle future missioni spaziali.
L’anomalia del Pioneer un decennio più tardi ha dato i suoi frutti.

 

 

Basato sull’articolo: “Modelling the reflective thermal contribution to the acceleration of the Pioneer spacecraft” F. Francisco, O. Bertolami, P.J.S. Gil e J.Pàramos, arXiv:1103.5222v1 [physics.space-ph]. Fonte ArXiv: http://arxiv.org/abs/1103.5222 .  Scaricabile su questo sito oppure direttamente, cliccando su: http://arxiv.org/PS_cache/arxiv/pdf/1103/1103.5222v1.pdf

 

Sabrina Masiero

(articolo originale su TuttiDentro: L’Anomalia del Pioneer: mistero risolto?)