Altri tasselli al puzzle della massa barionica mancante.

Il quasar UM 287 illumina la più grande nube di gas mai vista nell'Universo.

Il quasar UM 287 illumina la più grande nube di gas mai vista nell’Universo.
Credit: Nature

Oltre che la genesi e l’evoluzione, l’attuale  Modello Cosmologico Standard riesce ad indicare con discreta precisione anche la composizione dell’Universo 1 [cite]http://www.einstein-online.info/spotlights/BBN[/cite].
Nel 1933 l’astrofisico svizzero Fritz Zwicky, dimostrò una importante discrepanza tra la materia visibile e la massa misurata dell’ammasso di galassie della  Chioma 2.
Quello fu solo il primo dei tanti indizi che indicavano un’importante discrepanza tra le stime teoriche basate su leggi matematiche consistenti e i dati osservati.
Purtroppo almeno la metà della materia barionica prevista teoricamente finora è apparsa sfuggire da ogni tecnica di rilevazione diretta 3 4.

Tempo fa illustrai in queste stesse pagine [cite]http://ilpoliedrico.com/2012/09/la-materia-oscura-forse-solo-una-bolla.html[/cite] che enormi bolle di gas caldo (attorno a 1 – 2 milioni di kelvin) circondano le galassie. La massa complessiva di queste bolle è paragonabile a quello attualmente stimato per le galassie al loro centro.
Adesso altri recenti studi [cite]http://pa.as.uky.edu/circumgalactic-medium-and-galaxy-missing-baryon-problem[/cite] hanno rivelato che gli aloni galattici contengono anche una forma di gas molto più freddo (10.000° kelvin).
Gas così freddi non sono direttamente visibili ai telescopi 5 ma  alcuni aloni di questi aloni è stato possibile individuarli grazie all’impronta lasciata sulla luce di lontani quasar che li attraversano.

Il 7 gennaio scorso all’American Astronomical Society è stato presentato uno studio svolto sulla luce proveniente da diversi quasar posti accanto ad altre galassie in primo piano ripresi dal Telescopio Spaziale Hubble. Gli spettri di alcuni di questi oggetti hanno mostrato la presenza di significative quantità di carbonio, silicio e magnesio insieme alla presenza rivelatrice di tracce di idrogeno neutro (H I). Secondo i ricercatori, questo indica la presenza di aloni di gas relativamente freddo che circondano le galassie osservate attraverso la luce dei quasar. Aloni di materiale circumgalattico  freddo che possono contenere importanti quantità (dalle 10 alle 100 volte superiori di quanto finora stimato) di materia ancora nascosta e non conteggiata nelle stime della massa barionica mancante. Il team che ha realizzato questo studio è guidato da  Jessica Werk, astrofisica, dell’Università della California.

Questa sezione grande 10 milioni di anni luce simulazione del primordiale mostra come la materia si fonde in galassie collegate da filamenti di gas rarefatto. Credit: Nature

Una simulazione  del gas primordiale grande 10 milioni di anni luce  mostra come la materia riesce a fondersi in galassie collegate da filamenti di gas rarefatto.
Credit: Nature

All’incirca stessa tecnica è stata usata per osservare la più grande nube di gas conosciuta nell’Universo [cite]2014.14550[/cite]. Questa nebulosa pare essere uno dei filamenti di materia a grande scala del cosmo. Potrebbe essere la prima immagine diretta della ragnatela cosmica che pervade tutto l’Universo.
Gli autori di quest’altra scoperta sono gli astronomi Sebastiano Cantalupo e Xavier Prochaska anche loro dell’Università della California, Santa Cruz, che hanno usato il Keck Observatory, posto sulla cima del vulcano Mauna Kea alle Hawaii. Le immagini mostrano una nube di gas grande 460.000 parsec (1,5 milioni di anni luce) di lunghezza.
Sempre per il Modello Cosmologico Standard, prima della formazione delle galassie, L’Universo conteneva gas primordiale frutto della bariogenesi che disaccoppiò la materia dall’energia e che vide questa prevalere sull’antimateria e materia oscura. La materia oscura, predominante sulla materia barionica ordinaria, si addensò poi in estesi aloni gravitazionali in cui la materia ordinaria sarebbe poi finita per creare le galassie.
Ma come mostrano anche le simulazioni, non tutta la materia, sia la barionica che quella oscura, è finita per creare le galassie. Anzi, molta di questa avrebbe finito per creare la ragnatela tridimensionale che pervade il cosmo che collega tutte le galassie.
In effetti i ricercatori hanno trovato prove dell’esistenza di questi filamenti chiamati WHIM (Warm-Hot Intergalactic Medium), ovvero mezzo intergalattico caldo [cite]http://ilpoliedrico.com/2013/05/il-mistero-dei-barioni-mancanti.html[/cite].

Tutte queste nuove forme di materia -barionica – finora inosservate possono essere la risposta al dilemma della massa barionica mancante? forse è presto per dirlo ma credo di sì. Questa sarebbe un’altra prova della bontà del Modello Cosmologico Standard.


 

Note:

La caratterizzazione delle Super-Terre: Il ciclo geologico del carbonio

[latexpage]

Se credi che una certa cosa possa essere improbabile, almeno cerca di togliere l’impossibile e forse quello che ne rimane è potenzialmente vero.
Se un giorno riuscissimo a scoprire un’altra Terra, è altamente improbabile che questa presenti uno stadio evolutivo simile al nostro. La Terra è infatti ben lontana dall’essere un sistema statico fin dal momento della sua formazione avvenuta circa 4,6 miliardi di anni fa. Al contrario, per tutto questo tempo ha subito numerosi cambiamenti nella composizione atmosferica, nella temperatura, nella distribuzione dei continenti, senza parlare delle numerose e diverse forme di vita che l’hanno occupata. Tutti questi cambiamenti si sono riflessi nell’aspetto che potrebbe essere visto a distanze astronomiche. Ogni scenario ha avuto la sua firma caratteristica, e adesso saper riconoscere queste impronte in altri pianeti può aiutarci a capire se questi possono essere stati o esserlo nel futuro, potenzialmente abitabili.

Rappresentazione artistica di un pianeta potenzialmente abitabile.

Rappresentazione artistica di un pianeta potenzialmente abitabile.

Nel corso degli ultimi quattro anni è stato possibile scoprire parecchi pianeti nell’intervallo di massa tra 2 e 10 masse terrestri, quelli che vengono definiti  Super-Terre; alcuni di questi pianeti si vengono a trovare dentro oppure si trovano vicini alla zona di abitabilità della loro stella ospite. Recentemente sono stati annunciati nuovi pianeti delle dimensioni della nostra Terra e della nostra Luna, e questo numero sicuramente aumenterà in futuro.
Le prime statistiche hanno messo in evidenza che circa il 62% delle stelle della nostra Galassia potrebbero ospitare un pianeta delle dimensioni della nostra Terra mentre studi compiuti dalla missione Kepler della NASA indicano che circa il 16,5% delle stelle hanno almeno un pianeta delle dimensioni del nostro con periodi orbitali fino a 85 giorni.
Per poter caratterizzare queste esoterre scoperte dobbiamo prima di tutto dare uno sguardo al nostro Sistema Solare e ai suoi pianeti. La Terra è per ora l’unico pianeta conosciuto in cui esiste la vita; di conseguenza le osservazioni del nostro pianeta saranno una chiave fondamentale per lo studio e la ricerca della vita altrove.

Intanto, poter definire come un pianeta sia potenzialmente vivibile non è affatto facile, ci sono talmente tante condizioni al contorno da soddisfare che non è facile considerarle tutte. Una di queste impone che per sostenere la vita come la conosciamo, un pianeta debba permettere all’acqua di esistere allo stato liquido sulla sua superficie. Indicativamente, e forse in modo piuttosto semplicistico, spesso questa condizione viene identificata come la fascia – o zona – Goldilocks, quella zona né troppo lontana e né troppo vicina alla stella dove la radiazione consente all’acqua di esistere allo stato liquido su un pianeta. Quindi si tratta solo di un mero dato orbitale che ben poco ha a che vedere con la realtà: ad esempio, sulla Luna la presenza di ‘acqua allo stato liquido non è possibile anche se ne esiste una certa quantità allo stato solido (ghiaccio); eppure condivide con la Terra la stessa zona di abitabilità.

Quello che veramente occorre ad un pianeta perché possa essere considerato potenzialmente vivibile è un ambiente abbastanza stabile nel tempo che non sia soggetto a parossismi orbitali che periodicamente farebbero congelare o arrostire la sua superficie e un ambiente abbastanza ricco di energia da poter essere sfruttata dalle forme di vita. Se per risolvere il primo caso basta che l’eccentricità dell’orbita del pianeta sia prossima a zero, per il secondo caso il discorso si fa un attimino più complicato: occorre che la pressione ambientale consenta all’acqua di mantenere lo stato liquido in un ampio spettro di temperature e un meccanismo che garantisca che anche la temperatura sia più o meno stabile all’interno di questo intervallo 1 .

Il ciclo geologico del carbonio

Per la sua capacità di trattenere la radiazione infrarossa, l’anidride carbonica è un importante termoregolatore per la superficie di un pianeta 2.
Il modo in cui questa molecola riesce a passare dall’atmosfera al mare, al fondale marino e poi di nuovo all’atmosfera è affascinate, anche se richiede molto tempo e un prerequisito essenziale: la presenza di una tettonica a placche [cite] http://ilpoliedrico.com/2013/07/venere-e-terra-gemelli-diversi.html [/cite].

In questo ciclo alcune molecole di anidride carbonica ($CO_2$) atmosferica si disciolgono nell’acqua ($H_2O$) 3 formando acido carbonico .

\[
CO_2 + H_2O \rightleftharpoons H_2CO_3
\]

Un meccanismo molto efficace e che deve essere stato senz’altro presente fin dalle prime fasi della costituzione di una crosta solida è la pioggia. La pioggia ha anche un altro compito importante nell’evoluzione planetaria: desaturando un’atmosfera primordiale ricchissima di vapore acqueo 4 rafforza il processo di raffreddamento della superficie e facilita lo scorrimento delle prime zolle tettoniche necessarie per l’ultima fase del ciclo del carbonio.
Adesso l’acido carbonico disciolto nell’acqua è libero di dissolversi nelle rocce con cui viene a contatto, siano esse quelle esposte alle precipitazioni o i fondali marini. Una reazione che potrebbe essere piuttosto comune è la seguente, dove i silicati di calcio ($CaSiO_3$) svolgono un ruolo fondamentale nel ciclo:

\[
CaSiO_3 + 2H_2CO_3 \rightarrow Ca^{2+} + {2HCO_3}^{-} + H_2SiO_3
\]

tutti i membri di destra, gli ioni di calcio ($Ca^{2+}$), gli ioni  di idrogenocarbonato (${2HCO_3}^{-}$) 5 e l’acido silicico ($H_2 SiO_3$) sono ancora soluzioni acquose che potrebbero finire negli oceani.
Ben presto l’idrogenocarbonato viene a trovarsi in equilibrio con l’anidride carbonica disciolta nell’acqua secondo la seguente formula:

\[
{2HCO_3}^{-} \rightleftharpoons {CO_3}ì{2-} + H_2O + CO_2
\]

Quando la concentrazione di ioni carbonato (${CO_3}^{2-}$) aumenta, questi interagiscono con gli ioni di calcio visti prima e precipitano sotto forma di carbonato di calcio ($CaCO_3$) creando così minerari come la calcite e l’aragonite.
Questo è solo un esempio di come il carbonio atmosferico riesca a passare dalla forma gassosa nell’aria alla forma solida nella crosta planetaria. Il ruolo fondamentale di questo meccanismo è la presenza dell’acqua come solvente che ne consente il transito.

Rappresentazione artistica di un pianeta potenzialmente abitabile.

Rappresentazione artistica di un pianeta potenzialmente abitabile.

Il risultato di questo scambio sono minerali come la calcite che testimoniano la sottrazione del carbonio dall’atmosfera e che possono finire sepolti anche molto in profondità, al di sotto delle zolle tettoniche. Da qui poi, grazie all’attività vulcanica, il carbonio intrappolato nelle rocce potrebbe tornare di nuovo nell’atmosfera.
Se il meccanismo di sottrazione del carbonio dall’atmosfera dovesse venir meno per un calo eccessivo della temperatura globale, il naturale degassamento della crosta e del mantello tramite l’attività vulcanica dovrebbe far aumentare la concentrazione di $CO_2$ atmosferica e di conseguenza la temperatura. Altresì, un aumento eccessivo della temperatura dovrebbe permettere una maggior efficienza dei meccanismi di estrazione e quindi all’abbassamento di questa 6.
Il meccanismo del ciclo geologico del carbonio è complesso e comunque i suoi tempi di risposta sono piuttosto lunghi. Penso piuttosto a come l’equilibrio tra solvente (l’acqua del pianeta) e soluto (anidride carbonica) possa già di per sé portare ad una sottrazione dei due maggiori gas serra dall’atmosfera planetaria e alla stabilizzazione verso il basso della temperatura planetaria quando le condizioni ambientali consentono l’innescarsi di questo processo.

(continua …)


Note:

Il terribile equivoco del cianogeno

Buffo! Di solito ci attendiamo una corretta informazione dai siti scientifici ma a volte, rare volte, non è così.

La cometa di Halley al suo ultimo passaggio confrontata col suo spettro nel visibile e vicino infrarosso Credit: Uppasala University per lo spettro e NASA/W. Liller per l'immagine. Rielaborazione: Il Poliedrico

La cometa di Halley al suo ultimo passaggio confrontata col suo spettro nel visibile e vicino infrarosso. Credit: Uppasala University per lo spettro e NASA/W. Liller per l’immagine. Rielaborazione: Il Poliedrico

Tutto probabilmente nacque intorno al 1910, durante il penultimo ritorno della Cometa di Halley, quando gli scienziati resero pubblici i loro sospetti derivati da una scienza ancora agli albori, la spettroscopia: secondo i loro dati la coda della cometa conteneva elementi tossici come l’arsenico (As) e gas cianogeni  1. Ovviamente questo non avrebbe comportato alcun  problema per i terrestri, grazie alla protezione svolta dall’atmosfera e all’esigua densità della coda della cometa 2. Ma intanto alcuni venditori senza scrupoli approfittarono della notizia per vendere – e arricchirsi – inutili maschere antigas 3.

Durante il suo ultimo passaggio, nel 1986, la Halley si mostrò come nella prima immagine: aveva un colore abbastanza neutro che virava leggermente verso il violetto nella chioma di polveri e una coda di gas di un blu discreto.

Credit: ESO

Credit: ESO

Osservando lo spettro nella zona ultravioletta e violetta tra i 332 e i 432 nm si notano alcune righe di emissione:  all’estremo dello spettro visibile  4 e un’altra poco più giù attorno ai 420 nm. Altre righe importanti sono quelle prodotte dal radicale ossidrile (OH), il monossido di carbonio (CO) e il carbonio triatomico (C3).

E infatti la coda di gas ionizzato blu pallido lo conferma: i suoi colori sono quelli dei gas appena citati: cianogeno, radicale ossidrile, monossido di carbonio e carbonio triatomico.

La cometa Lemmon.confrontata col suo spettro. Credit: RobK di Bright, Vic, Australia per lo spettro e anonimo per l’immagine. Rielaborazione: Il Poliedrico

La cometa Lemmon.confrontata col suo spettro.
Credit: RobK di Bright, Vic, Australia per lo spettro e anonimo per l’immagine.
Rielaborazione: Il Poliedrico

Adesso torniamo ai giorni d’oggi e alla stupenda – per chi è riuscito a vederla – C/2012 F6 (LEMMON) dello scorso marzo.
Dallo spettro di questa cometa è evidente che del radicale cianogeno non ce n’è traccia, né a 380 nm, né ai 420 nm. Piuttosto qui il verde brillante della chioma è dato dalle intense righe del carbonio biatomico (C2).
Lo stesso errore viene ancora oggi commesso riguardo la C/2012 S1 (ISON) che – nel momento in cui scrivo – emette molto poco a 380 nm, mentre le righe del carbonio biatomico a 440 e a 520 nm sono più pronunciate, come evidenzia il primo spettro:


Lo spettro di C/2012 S1 (ISON) l'11/10/2013

Lo spettro di C/2012 S1 (ISON) l’11/10/2013 Credit:  astrosurf.com

Lo spettro di C/2012 S1 (ISON) il 24/10/2013

Lo spettro di C/2012 S1 (ISON) il 24/10/2013  Credit: astrosurf.com

Credit: Wikipedia

Nel secondo spettro anche se la riga del radicale cianogeno appare molto più pronunciata del primo, il contributo di questa emissione al colore complessivo della cometa non appare evidente, come si può facilmente notare dalle innumerevoli immagini in Rete della cometa in quei momenti. Questo perché il picco di sensibilità dell’occhio umano raggiunge il massimo proprio tra i 500 e i 600 nm, giusto dove anche l’emissione del carbonio biatomico è più elevata.
Invece, tornando alla Halley del 1986, le emissioni del carbonio biatomico ionizzato erano trascurabili, tanto da far risaltare la scia azzurrognola e violetta delle emissioni di CN.
Eppure Spaceweather.comAPOD della NASA e via di seguito molti altri siti che si occupano di astronomia fanno, e hanno fatto tutti lo stesso errore; attribuire indistintamente l’aspetto verdastro di una cometa al cianogeno. Su questo tema il dibattito su alcuni forum astrofili oltreoceano è acceso, tant’è che anche un astronomo e divulgatore scientifico come Phil Plait ha riconosciuto l’equivoco 5.

Colore
Lunghezza d’onda
Violetto 380–435 nm
Blu 435–500 nm
Ciano 500-520 nm
Verde 520–565 nm
Giallo 565–590 nm
Arancione 590–625 nm
Rosso 625–740 nm

Probabilmente la spiegazione a questa errata interpretazione è molto più banale di quanto si pensi:  una riga di emissione (spesso la più intensa) del carbonio biatomico è fra i 510 e i 520 nm, proprio nel mezzo della fascia di colore che comunemente attribuiamo al colore ciano!
Molto probabilmente a partire dai tempi della scoperta dei composti cianogeni nella coda della Cometa di Halley, qualcuno in passato ha erroneamente associato il termine cianogeno col colore ciano e l’errore poi si è tramandato nel tempo e nessuno l’ha poi più corretto.

Quindi, anche se pare diventata affermazione comune associare il verde brillante della chioma di una cometa con i radicali cianogeni, questi non ne hanno alcuna responsabilità, la colpa è tutta del carbonio biatomico emesso dalla cometa che si ricombina attorno ai 520 nm.
Spargete la voce.


Bibliografia:

 

  1. Ji Hye Lee, Tae Yeon Kang, Hyonseok Hwang, Chan Ho Kwon, Hong Lae Kim, “Photodissociation Dynamics of Cyanamide at 193 nm: The CN Radical Production Channel”, Bulletin Of The Korean Chemical Society 29, 1685-1688 (2008).[08LeKaHw.CN
  2. David G. Schleicher, “THE FLUORESCENCE EFFICIENCIES OF THE CN VIOLET BANDS IN COMETS”, Astronomical Journal140, 973-984 (2010). [link to article][10Scxxxx.CN]
  3. M. Kleine, S. Wyckoff, P. A. Wehinger, B. A. Peterson, “THE COMETARY FLUORESCENCE-SPECTRUM OF CYANOGEN – A MODEL”, Astrophysical Journal 436, 885-906 (1994). [link to article][94KlWyWe.CN]
  4. Atlas of cometary spectra, Institut d’Astrophysique et de Géophysique de l’Université de Liège, Allée du 6 Août, 17 – Bât B5cB-4000 Liège 1, BELGIQUE E-Mail : hyperion@astro.ulg.ac.be

 

Le correnti dello spazio

[latexpage]

Credit: Max Camenzind @ CamSoft, University of Heidelberg.

Credit: Max Camenzind @ CamSoft, University of Heidelberg.

Credit:

Credit: H. Courtois, D. Pomarède; SDvision

Credo che ormai siano rimasti in pochi a non avere mai visto una immagine come questa qui sopra: essa descrive in maniera abbastanza accurata la struttura a grande scala dell’Universo, da quando questo ha assunto il suo aspetto attuale dopo il disaccoppiamento tra materia ed energia, la formazione delle prime galassie ad oggi. La pressione di espansione dell’Universo ha diradato la materia in lunghi filamenti che l’attraversano per intero, intervallati da ampi spazi di vuoto che neppure la migliore tecnologia attuale può riprodurre: un atomo di idrogeno – un protone e il suo elettrone – per metro cubo. Però sono tutte immagini più o meno statiche, molti filmati non fanno altro che evidenziare la geometria frattale dell’Universo con zoom più o meno elaborati. Quello che hanno fatto invece i ricercatori Helene Courtois, Daniel Pomarede, Brent Tully, Yehuda Hoffman e Denis Courtois è stato di creare un filmato dell’universo locale tenendo conto  e rappresentando  i moti peculiari di oltre 30000 galassie comprese in circa 350 milioni di anni luce 1.

Il dipolo perfetto mostrato dal Cosmic Background Explorer nella Radiazione Cosmica di Fondo indica che l'Ammasso della Vergine, a cui appartiene la Via Lattea e il Gruppo Locale, è dotato di un moto centrato sul superammasso chiamato Grande Attrattore.

Il dipolo perfetto mostrato dal Cosmic Background Explorer nella Radiazione Cosmica di Fondo indica che  la Via Lattea – e il Gruppo Locale – si muove verso l’Ammasso della vergine che a sua volta si muove apparentemente verso il Grande Attrattore.

Le galassie prese in esame non sono poi molte, tenendo conto di un limite ragionevole alla magnitudine bolometrica pari a $M_B$ -16. Praticamente tutte le galassie comprese entro un raggio di 43 milioni di anni luce sono state incluse nello studio, mentre a 350 milioni di anni luce solo una galassia su 13 è stata presa in esame, per un totale che rappresenta comunque il 40% delle galassie racchiuse nello spazio considerato. I rimanenti oggetti più deboli dovrebbero ragionevolmente seguire le medesime influenze delle galassie più luminose e pertanto la loro assenza non è poi così significativa.

Tra i diversi temi affrontati, questa ricerca prova a dare una spiegazione anche alla polarità osservata nella Radiazione Cosmica di Fondo (Cosmic background radiationCMB in inglese) che mostra come la Via Lattea abbia un moto peculiare di circa 630 km/s rispetto ad essa. Questo studio evidenzia infatti almeno due grandi correnti distinte che si muovono verso strutture molto più grandi – superammassi – di cui solo uno, il Grande Attrattore 2, è compreso nello spazio preso in esame. Queste correnti fanno da cornice a vaste zone di vuoto, il Vuoto Locale 3  e finora sono state staticamente interpretate come fogli, gusci o filamenti di galassie, mentre preferisco vederle in modo più dinamico, correnti di materia che attraversano l’Universo.

Ma adesso lasciamo parlare  le immagini. Buona visione.

[video_lightbox_youtube video_id=”WCHi4hioFEI&rel=false” auto_thumb=”1″ width=”800″ height=”450″ auto_thumb=”1″]

Altri riferimenti:

  1. [tpsingle id=”1″]
  2. [tpsingle id=”3″]
  3. [tpsingle id=”62″]
  4. [tpsingle id=”64″]

Note:


L’equilibrio idrostatico nelle atmosfere planetarie

[latexpage]

Cercare altre forme di vita complesse al di fuori del nostro pianeta non può prescindere dal cercare innanzitutto habitat anche solo potenzialmente adatti; per questo ho in passato affrontato temi importanti come la stima della CHZ (Circumstellar Habitable Zone), dello spessore delle atmosfere e della necessità di un campo magnetico planetario adeguato a protezione di queste. Solo il tempo e nuovi strumenti di indagine potranno aiutare ad individuare questi habitat alieni, io mi limito solo a indicare, anche col vostro prezioso contributo di commentatori, quali condizioni a contorno sono necessarie – allo stato attuale delle conoscenze – affinché un habitat sia potenzialmente adatto alla Vita.

equilibrio idrostatico

Gli strati di una atmosfera e il loro equilibrio idrostatico.
Credit: Il Poliedrico

Dopo avere visto quali meccanismi sono alla base della genesi di una atmosfera planetaria e quali altri elementari meccanismi regolano il suo spessore, adesso è giunto il momento di affrontare il tema forse più ostico di tutti: quali sono le condizioni fisiche di una atmosfera.
Queste condizioni non sono solo dettate dalla cruda composizione chimica ma anche dai valori di temperatura, densità e pressione presenti.
Ad esempio dalla stima della pressione è possibile ipotizzare la presenza di acqua in fase liquida sulla superficie di un pianeta per un dato intervallo di temperature sopra il suo punto di congelamento 1, una delle diverse condizioni a contorno – probabilmente – necessarie alla nascita e allo sviluppo della Vita.
La temperatura è l’energia cinetica delle particelle, più essa è alta e più velocemente gli atomi – oppure le molecole – si muovono, mentre per la densità dei gas di solito ci si riferisce al numero delle particelle per unità di volume.
La pressione di un gas è la quantità di forza esercitata su una superficie per unità di area dalle sue particelle costituenti 2 che si muovono in modo del tutto casuale e la cui velocità è proporzionale alla temperatura del gas.
Riassumendo questo concetto in termini puramente matematici scriveremmo:
\[
P_{ressione}=\frac{F_{orza}} {A_{rea}}
\]
In pratica potremmo considerarlo il peso dell’aria su una superficie al livello del mare: un chilogrammo per centimetro quadrato sulla Terra, su Venere sarebbero 92 Kg/cm2 (92 bar) e così via 3.

Questi tre parametri apparentemente così diversi sono in realtà legati 4 da una equazione di stato, la Legge dei Gas Perfetti. Adesso in natura non esiste un’atmosfera che sia un Gas Ideale, ma molti gas reali, quali azoto, ossigeno, idrogeno etc. possono essere considerati con buona approssimazione come Gas Perfetti.
Per questa legge, un raddoppio di temperatura o un raddoppio della densità di un gas porta al raddoppio della sua pressione 5.

spinta idrostatica piccolaMa come abbiamo visto nel precedente articolo, la gravità svolge un ruolo determinante per determinare lo spessore, e quindi il volume, di una atmosfera. La gravità attrae verso il suo centro tutte le sue particelle – potremmo dire verso il basso – mentre l’agitazione termica delle particelle le si oppone.
Con un volume ben definito, possiamo immaginare una atmosfera come un qualsiasi sistema (recipiente) chiuso. Qualsiasi variazione nella densità o nella temperatura di una atmosfera quindi si riperquoterà sulla sua pressione. Ma esiste un equilibrio ben preciso che lega la pressione di un gas alla forza di gravità: si chiama equilibrio idrostatico 6.
Come mostra la figura qui accanto, alla gravità si oppone una forza chiamata gradiente di pressione verticale. Una particella a una certa quota è sovrastata da un numero minore di altre particelle rispetto a una che è al suolo, per cui la pressione esercitata su di essa dalle altre decresce con l’aumentare dell’altezza. Questo spinge i gas a salire, cioè a passare da dove la pressione è maggiore verso quote dove la pressione è minore, opponendosi alla forza di gravità. Quando le due forze opposte si bilanciano si parla appunto di equilibrio idrostatico. Questo processo suddivide l’atmosfera in strati di diversa pressione e temperatura – e per certi versi anche di composizione chimica –  diversi tra loro.
Matematicamente avremmo:
\[
F_P=\Delta P \cdot A
\]
Dove $\Delta P$ è la differenza tra la pressione inferiore e quella superiore di uno strato mentre $A$ è la sua area analizzata. Invece la forza di gravità è data da:
\[
F_G = -m \cdot g
\]
dove $g$ è l’accelerazione di gravità del pianeta considerato 7 e $m$ la massa dello strato di atmosfera considerato. Se l’equilibrio idrostatico si ha quando $F_P=F_G$ e se $\Delta z$ è lo spessore dello strato indicato di densità $p$ allora:
\[
\Delta P \cdot A = -p \cdot A \cdot \Delta z \cdot g
\]
ossia
\[
\frac{\Delta P} {\Delta z} = -p \cdot g
\]
Ovviamente questa trattazione matematica è sui generis, non tiene conto di migliaia di altri fattori come l’insolazione, i moti verticali nel fluido atmosferico, la Forza di Coriolis, i venti etc. Semplicemente dice quanto la pressione – legata al prodotto tra la densità dello strato $p$ e $g$ – vari di una certa quantità $\Delta P$ al  variare di una certa quota $\Delta z$.

Con questo articolo non si conclude certo l’argomento trattato, ossia le atmosfere planetarie, ma aggiunge un altro tassello al complesso mosaico della planetologia nella speranza che un giorno potremo veramente studiare una vera atmosfera di un esopianeta roccioso. Spero che questa mia fatica ricompensi voi lettori a leggerla quanto me a scriverla.


La genesi delle atmosfere planetarie

Nello scorso articolo ho mostrato come lo spessore di una atmosfera planetaria sia sostanzialmente il risultato di un compromesso tra due forze opposte: la velocità di fuga e la velocità molecolare dei gas che la compongono. Ma per comprendere questa componente essenziale di un pianeta occorre capire come si forma.

In questa immagine del 2007 ripresa dalla Stazione Spaziale Internazionale si può vedere un riflesso del Sole sull'Oceano Pacifico. Questo è quello che gli astronomi tentano di rilevare. Credit: NASA

Questa immagine è stata ripresa dalla Stazione Spaziale Internazionale nel 2007 e mostra parte dell’Oceano Pacifico. Le nubi e l’acqua liquida rendono questo pianeta perfetto per ospitare la vita. Credit: NASA

Una atmosfera planetaria è governata principalmente da due forze contrapposte. Il risultato finale è una stratificazione dei gas che la compongono: gli elementi più pesanti e lenti occupano gli strati inferiori, contribuendo così in maniera determinante alla composizione chimica dell’atmosfera al suolo mentre quelli più leggeri – e veloci – determinano la chimica degli strati superiori.

Però purtroppo questi indizi di per sé importanti non dicono poi molto sulla composizione chimica finale che dovremmo aspettarci in un pianeta. Per quello, per ora, l’unico modo che abbiamo per cercare di capire la composizione di un’atmosfera è quella di rifarsi alla storia del nostro Sistema Solare e alle teorie più accreditate sulla formazione dei sistemi planetari 1.

La cattura nebulare

I pianeti rocciosi del nostro Sistema Solare si formarono in una zona densa e calda (circa 700-1000 Kelvin) del disco protoplanetario 2, ricca di elementi chimici pesanti – ne è la prova la densità media dei pianeti stessi – e piuttosto povera di quelli più leggeri 3. Questo significa che di elementi e composti gassosi sopravvissuti alla fase di formazione planetaria ce n’erano davvero ben pochi e le primitive atmosfere composte prevalentemente da idrogeno scomparvero appena il Sole iniziò a brillare quasi 5 miliardi di anni fa. Queste tenui atmosfere vennero spazzate via dal vento stellare che ripulì – e raffreddò – l’appena nato sistema planetario, mentre i precursori degli attuali pianeti continuarono a raccogliere i grumi di materia ormai solida che incontravano durante la loro orbita. Quei grumi, conosciuti come materiale asteroidale, ogni tanto giungono ancora oggi sulla Terra e li chiamiamo meteoriti.

Il degasaggio durante l’accrezione

Questo meccanismo è una via di mezzo tra la cattura nebulare e il degassamento tettonico. La cattura dei corpi minori che si erano solidificati dopo l’accensione della stella da parte dei protopianeti maggiori, continuò per svariati milioni di anni, seppur in maniera decrescente con l’andar del tempo 4.
Molti di questi corpi avevano incorporato e protetto dalla radiazione stellare parte del gas nebulare, altri avevano incorporato alcuni composti particolarmente volatili come ioni ossidrili (OH), acqua, carbonio, zolfo e cloro nella loro struttura chimica, altri ancora potevano aver intrappolato i composti volatili con entrambi questi metodi.
Questi corpi una volta catturati dai protopianeti avrebbero potuto liberare parte o tutto il materiale più volatile in loro possesso dando luogo a una primitiva atmosfera.

Il degassamento tettonico

I pianeti appena formati erano molto caldi, oltre il punto di fusione delle rocce. Questo era dovuto principalmente sia al continuo impatto dei corpi minori sulla loro superficie, che ai fenomeni di decadimento radioattivo degli isotopi pesanti che i pianeti avevano catturato durante il loro processo di formazione. Iniziò quindi un processo di differenziazione planetaria che portò alla separazione degli elementi chimici più pesanti da quelli più leggeri 5 e all’avvio di imponenti fenomeni tettonici che liberarono enormi quantità di gas come vapore acqueo, anidride carbonica, idrogeno, acido cloridrico, ossido di carbonio, zolfo e azoto, molto simili ai gas che ancora oggi i vulcani terrestri ancora emettono.

Nel Sistema Solare

Diagramma di fase dell'acqua. La possibilità dell'acqua di rimanere allo stato liquido a pressioni molto elevate le consente di svolgere il ruolo di lubrificante delle placche continentali. Fonte dell'immagine: Wikipedia.

Diagramma di fase dell’acqua.
La possibilità dell’acqua di rimanere allo stato liquido a pressioni molto elevate le consente di svolgere il ruolo di lubrificante delle placche continentali.
Fonte dell’immagine: Wikipedia.

Restando all’interno del Sistema Solare, Mercurio, che oltre ad essere il più piccolo pianeta roccioso del sistema, è anche il più vicino al Sole e ha la densità più alta di tutti: 5,43 g/c3. Non possiede una  atmosfera imponente come Venere e Terra, ma neppure come Marte che, nonostante sia il doppio come dimensioni, ha una gravità superficiale – e quindi una velocità di fuga – molto simile. Infatti la pressione superficiale al suolo di Mercurio è appena 10-15 bar, mentre quella di Marte è ben più importante: 0,006 bar!
Venere e Terra sono molto simili come dimensioni, massa e densità. Eppure Venere ha una gigantesca atmosfera ipersatura di anidride carbonica mentre la Terra, fortunatamente per noi ora, no. Venere è più vicina al Sole e il suo periodo di rotazione è ora di oltre 116 giorni terrestri. Sicuramente questo non è stato sempre così, la possente atmosfera e l’azione mareale del Sole su di essa hanno agito da freno sul pianeta. Su Venere l’acqua che veniva rilasciata dai fenomeni tettonici e quella catturata dalle comete non è riuscita a liquefarsi e a catturare l’anidride carbonica dall’atmosfera facendola precipitare come carbonato sul fondo degli oceani. Niente acqua liquida alla superficie vuol dire che anche l’attività di subduzione si è progressivamente fermata. Questo significa che anche il ciclo di trasporto del carbonio nel mantello del pianeta si è fermato e il calore interno adesso viene trasportato solo da fenomeni parossistici di vulcanismo che rilascia ancora ingenti quantità di altri gas serra come anidride carbonica e vapore acqueo rimasti intrappolati nel mantello dal tempo della sua formazione. Ecco perché Venere ha una atmosfera composta perlopiù da anidride carbonica (il 95%) all’incredibile pressione di 92 bar e a circa 730 Kelvin di temperatura al suolo!
Per la Terra non ho molto da dire, ho già descritto la storia della sua atmosfera in passato 6, senonché la maggiore distanza dal Sole ha permesso qui all’acqua di liquefarsi e di sottrarre l’anidride carbonica dall’aria. L’acqua liquida è arrivata fino alla parte superiore del mantello dove ha così potuto mantenere attiva la dinamica della tettonica a zolle che ha dissipato buona parte dell’energia dovuta al calore interno del pianeta che così non è finita ad alimentare un grande vulcanismo come quello venusiano. In più non dimentichiamo l’importante ruolo che ha svolto la Luna sull’evoluzione della nostra atmosfera. Infatti la Terra è l’unico pianeta roccioso del Sistema Solare ad avere un imponente satellite – Phobos e Deimos di Marte sono solo due asteroidi catturati dal Pianeta Rosso per caso. La Luna ha stabilizzato il piano di rotazione della Terra come se l’intero sistema Terra-Luna fosse un enorme giroscopio, impedendo così all’azione mareale del Sole di dominare la rotazione del nostro pianeta  – come è invece successo a Venere – e al contempo ha sottratto tanta atmosfera proprio con le sua forza di marea. Il risultato è stata una atmosfera un po’ più sottile, una rotazione più stabile e anche il meccanismo della tettonica a zolle si è giovato della forza mareale lunare. Che dalla Sorella Luna forse sia dipesa l’abitabilità – per noi terrestri -di questo mondo probabilmente è un dato di fatto.

Su Marte e la sua atmosfera ho parlato qualche giorno fa, quindi ho poco altro da aggiungere. Marte è troppo piccolo per trattenere una atmosfera apprezzabile, appena 6 millesimi di bar al suolo. Forse però in passato grazie alla sua primordiale attività geologica che ci ha lasciato imponenti edifici vulcani ha potuto pompare abbastanza gas serra per mantenere per un breve periodo – forse qualche centinaio di milioni di anni – l’acqua allo stato liquido. Forse questo breve periodo ha visto nascere la Vita sul Pianeta Rosso, o forse no. Sulla Terra sono passati almeno 600 milioni o forse più prima che le prime forme di vita procariotiche si sviluppassero; e la Terra aveva sicuramente qualche carta in più da giocare rispetto a Marte.

Adesso sappiamo anche come si forma l’atmosfera di un pianeta roccioso, manca ancora cosa aspettarci a grandi linee sulla sua composizione, ma di questo ne parlerò prossimamente. Restate all’erta!


Il mistero dei barioni mancanti

L’ammasso di galassie nella Chioma di Berenice (Abell 1656) – Credit: NASA, ESA, and the Hubble Heritage Team (STScI/AURA). Acknowledgment: D. Carter (Liverpool John Moores University) and the Coma HST ACS Treasury Team.

Nel 1933 l’astrofisico svizzero Fritz Zwicky, del California Institute of Technology, applicò un metodo di indagine chiamato teorema del viriale all’ammasso di galassie della  Chioma e ottenne le prime prove dell’esistenza di una importante discrepanza tra la materia visibile e la massa misurata dell’ammasso.
Zwicky stimò che la massa totale dell’ammasso basata sui moti delle galassie vicino al suo bordo rispetto ad una stima in base al numero delle galassie totale dell’insieme era circa 400 volte più alta.
La gravità stimata delle galassie visibili nel ammasso sarebbe stata troppo piccola per giustificare la velocità di queste e quando ulteriori osservazioni confermarono in seguito i risultati di Zwicky, per i cosmologi si pose seriamente il “problema della massa mancante”.
Infatti a questo punto se si voleva mantenere intatto Il concetto dell’inverso del quadrato della distanza ( 1/R2 dove R è la distanza) che è la base della teoria della gravitazione, nasceva un bel problema scientifico: come giustificare questa differenza? Cos’è questa materia che ha una importante influenza gravitazionale ma che è di fatto invisibile alle analisi ottiche/elettromagnetiche?

La galassia UGC 7321, un ottimo esempio di galassia cxircondata da un alone di materia oscura. Rielaborazione immagine:  Il Poliedrico

La galassia UGC 7321, un ottimo esempio di galassia circondata da un alone di materia invisibile.
Rielaborazione immagine:
Il Poliedrico

Il Modello Cosmologico Standard suggerisce che tutto l’Universo è composto per il 4,9% da materia barionica – neutroni, protoni, elettroni (anche se questi non sono proprio barioni) – ordinaria, il 26,8% da una forma di materia totalmente sconosciuta che però produce effetti gravitazionali e per il 68,3% da energia oscura l2 l3.
Ma se spiegare quel 26,8% di materia oscura è già un grosso problema, figuriamoci spiegare che almeno la metà della massa barionica richiesta dal Modello Cosmologico Standard non si trova!
Certo questo è un bel rompicapo nel rompicapo, è come dover comporre un puzzle con tessere che sono a loro volta altri puzzle da comporre.

Oggetti di natura barionica fredda che non emettono luce possono essere  pianeti, nane brune o anche dei semplici granelli di polvere, ma mentre una nube interstellare copre vaste regioni di spazio, un corpo massiccio di dimensioni megametriche 1 intercetterà di certo meno luce di una nube grande svariati anni luce. Obbiettivamente però è difficile che una massa significativamente importante 2 sia dispersa in miliardi di corpi massicci troppo piccoli per emettere o assorbire luce in maniera apprezzabile.
Questi oggetti massicci sono chiamati MACHO (MAssive Compact Halo Object) ma secondo le stime migliori possono rappresentare appena il 20% della massa totale di una galassia 3, certo rappresentano una parte importante della massa di una galassia, ma comunque sono sempre un po’ troppo pochi per giustificare la parte non rilevata di massa barionica.

Questa è una simulazione computerizzata dell'aspetto di circa 2 miliardi di anni di spazio che mette in evidenza lo WHIM. Credit: Matthew Hall, NCSA.

Questa è una simulazione computerizzata dell’aspetto di circa 2 miliardi di anni di spazio che mette in evidenza lo WHIM.
Credit: Matthew Hall, NCSA.

Alcuni studi recenti inoltre mostrano che le singole galassie sono al centro di gigantesche bolle di gas ionizzato 4 di massa paragonabile alla galassia ospite. Data la rarefazione estrema, questo gas è ionizzato a temperature comprese tra i centomila e un milione di kelvin, quindi è quasi impossibile da vedere, visto che a quelle temperature le righe spettrali degli atomi dominano nei Raggi X.
Probabilmente la sua origine è legata ai venti stellari  della galassia  e modellato almeno in parte dal campo magnetico globale di questa.
Questo è lo WHIM (Warm-Hot Intergalactic Medium), ovvero mezzo intergalattico caldo, di cui le bolle galattiche sono solo una parte, che si estende tra le galassie dando all’Universo l’aspetto di  ragnatela tridimensionale.

Forse è presto per dirlo, ma con i MACHO e lo WHIM almeno la tessera del puzzle che rappresenta la massa barionica mancante pare sia ricomposta e che in fondo questa sia stata ritrovata.
Adesso resta che capire cosa sia l’altro 84,5% della massa dell’Universo che chiamiamo Materia Oscura e che ancora sfugge alla nostra comprensione.
Sotto a chi tocca.


Breve storia dell’Universo

La storia dell'Universo. Credit:grandunificationtheory.com

La storia dell’Universo.
Credit:grandunificationtheory.com

Sono nato quasi 14 miliardi di anni fa, minuto più, minuto meno, nel nulla più assoluto: non c’era alcuno spazio intorno a me e nessun tempo da misurare, quelli li ho creati io.

Fu un gran bel botto ma non c’erano orecchie per sentirlo, non le avevo ancora create.
Nacqui pieno di energia, una energia ancora misteriosa che neppure il più potente acceleratore di particelle o il più massiccio quasar potrà mai ricreare.

Eppure nell’arco di appena una frazione infinitesimale di un secondo la mia energia scemò fratturandosi in quattro forze che sono l’una lo specchio dell’altra, tutte alquanto simili ma molto diverse tra loro, mentre momentaneamente mi espandevo più veloce della luce.
Subito dopo una parte della mia energia si  tramutò in materia e antimateria, che però non si sopportavano e scontrandosi si annichilivano. Ma tra le pieghe delle leggi con cui ero nato era nascosto il segreto che avrebbe permesso alla materia di uscire vittoriosa dallo scontro con l’antimateria.

Ne il primo, turbolento secondo la mia materia primordiale si raffreddò e si diluì nello spazio che via via stavo creando fino a che, dopo appena tre minuti, le mie particelle fondamentali si riunirono in particelle più complesse e in trecentomila anni in atomi.

Ora la materia increspava lo spazio curvandolo con il suo stesso  peso creando i presupposti per il mio aspetto attuale: enormi filamenti, ponti che attraversavano tutto lo spazio vuoto come il tessuto di una spugna. 

Dopo appena un miliardo di anni questi filamenti collassarono in gigantesche nubi, le protogalassie, che a loro volta si frammentarono in nubi più piccole che formarono le prime stelle.
Dai tempi in cui energia e materia erano unite tutto lo spazio risplendeva di luce blu, ma purtroppo ancora non c’erano occhi che mi potessero vedere.
Ben presto quelle magnifiche stelle blu esplosero disseminando tutto intorno a loro i semi che avrebbero costruito nuove generazioni di stelle e pianeti.

Finalmente in qualche angolo  remoto di me stesso, con quegli elementi che adesso erano parte di me, mi evolsi ancora una volta: in Vita.
Per la prima volta in 13 miliardi di anni stavo per prendere coscienza di me stesso. Avevo creato occhi per vedermi e orecchie per sentire il mio respiro. Un cervello per pensare e intelligenza per comprendermi. 

Intanto, continuo ancora ad espandermi ….

 

 

Gli straordinari risultati di AMS-02

Martedì scorso a Los Angeles il celebre cosmologo Stephen Hawking ha suggerito che l’unico modo che ha l’umanità di sopravvivere per i prossimi mille anni è quello di dedicarsi alla colonizzazione dello spazio. Questo è ragionevole: con otto miliardi di bocche da sfamare, gli equilibri economici e le risorse sempre più scarse, il rischio di guerre, pestilenze o catastrofi naturali, vivere su un solo pianeta come dice Hawking è veramente rischioso.
Ma anche andarsene da questo posto, la Terra, non è affatto facile.
Colonizzare altri mondi allo stato tecnologico attuale non è possibile. Potremmo costruire habitat orbitali come suggerì O’Neill nel 1976, colonizzare Marte con città protette da cupole gigantesche che trattengono l’atmosfera 1, spingerci fino ai confini del Sistema Solare e in futuro forse fino alle stelle più vicine con immense navi generazionali. Il Cosmo è sicuramente il posto più inospitale in assoluto che ci sia, ma è anche quello che più ci fa sognare. Un vero salto nel buio.

Rappresentazione schematica dell’Alpha Magnetic Spectrometer. – Credit: INFN

Rappresentazione schematica dell’Alpha Magnetic Spectrometer. – Credit: INFN

Uno dei misteri più grandi del cosmo riguarda la sua composizione: secondo il Modello Cosmologico Standard l’Universo è composto per il 4,9% da materia ordinaria (barionica), il 26,8% da materia di cui non se ne conosce la natura (oscura) e per il 68,3% da energia oscura 2 3. Quindi l’84,5% di tutta la materia di tutto l’Universo sfugge alla nostra comprensione. L’unica cosa certa è che questa esotica forma della materia è sensibile all’interazione gravitazionale ma non emette o assorbe la luce.

Lo scorso 3 aprile il team di ricercatori guidati dal premio Nobel Samuel Ting del MIT/CERN ha annunciato che l’Alpha Magnetic Spectrometer (AMS-02 4) dalla sua installazione sulla Stazione Spaziale Internazionale (2011) a fine 2012 oggi ha contato più di 400.000 positroni, l’equivalente antimateria degli elettroni.
Di per sé non è poi così difficile produrre positroni in laboratorio, basta bombardare la materia con fotoni ad alta energia 5 o sfruttare il naturale processo di decadimento radioattivo di alcuni isotopi (decadimento β+) ma, essendo il nostro universo dominato dalla materia, la sopravvivenza – emivita – di questa antiparticella è limitata all’incontro con un elettrone con cui si annichila emettendo due fotoni gamma da 511 kev emessi in direzioni opposte 6.

Il decadimento b+

Il decadimento β+

Per questo rilevare 400 mila positroni fra i 25 miliardi di eventi 7 registrati in 18 mesi (maggio 2011 – dicembre 2012) è straordinario.
Che i raggi cosmici contenessero un po’ di antimateria era risaputo almeno dal 2009 8, ma non in quantità così insolite: almeno il 10% del totale degli eventi dovuti a elettroni e positroni è dovuto da questi ultimi.

Una pulsar può accelerare le coppie di particelle-antiparticelle che AMS-02 ha rilevato.

Cosa produca tutti questi positroni in un universo di materia è un mistero. Questo potrebbe essere un indizio importante per scovare finalmente la materia oscura.

Per spiegare la natura della materia oscura sono state avanzate le più disparate teorie, dai neutrini massivi a particelle esotiche supersimmetriche 9  chiamate neutralini, che collidendo tra loro dovrebbero produrre un gran numero di positroni ad alta energia.

Un’altra sorgente di positroni molto meno esotica ma che vale comunque la pena di prendere in considerazione è nascosta nelle pulsar.
Le pulsar sono stelle di neutroni che si formano in seguito alle esplosioni di supernova. Questi resti ruotano sul loro asse migliaia di volte al secondo e hanno un campo magnetico milioni di volte più potente di quello che possiamo creare in laboratorio 10.
Le pulsar in pratica sono dei fantastici acceleratori naturali di particelle tra cui  coppie di elettroni e positroni, che possono spiegare le quantità rilevate da AMS-02.
Come riconosce Samuel Ting l’unico modo per distinguere l’origine dei positroni è quello di raccogliere altri dati e coprire un più ampio spettro di energia che per ora l’Alpha Magnetic Specrometer ha solo iniziato a mostrare 11.
L’ASM-02 rimarrà in funzione almeno fino al 2020 e potrà aiutare a risolvere finalmente il mistero della materia oscura.


L’enigma dei neutrini solari

[latexpage]

L'interazione debole di un antineutrino elettronico con un neutrone all'interno di un nucleo atomico può spingerlo a decadere in un protone e un elettrone. Credit Il Poliedrico.

L’interazione debole di un antineutrino elettronico con un neutrone all’interno di un nucleo atomico può spingerlo a decadere in un protone e un elettrone. Credit Il Poliedrico.

Abbiamo visto nello scorso articolo che i neutrini sono delle particelle molto particolari, non solo per la loro impalpabilità – interagiscono solo con la forza nucleare debole e la forza gravitazionale – ma anche perché pur essendo una particella sola può assumere tre diversi stati diversi tra loro che si differiscono nella massa, mentre il Modello Standard pur prevedendo  i tre tipi diversi di neutrino associati ai tre leptoni (elettrone, muone,tau) li propone senza  1.
Ma è appunto la massa che permette ai neutrini di oscillare, ossia di cambiare stato, o sapore come volete chiamarlo.
Già con i primi esperimenti di lettura della quantità dei neutrini provenienti dal Sole fu chiaro che qualcosa non andava: i conteggi dei neutrini mostravano che solo un terzo dei neutrini elettronici arrivava sulla Terra rispetto alla quantità prevista per mantenere il Sole acceso. Dunque, o qualcosa non andava nelle reazioni termonucleari del Sole oppure ⅔ dei neutrini elettronici prodotti dalla catena  protone-protone trovavano il modo di non farsi vedere.
La risposta che ora appare evidente è che durante il loro cammino di 150 milioni di chilometri molti neutrini cambiano sapore e che quindi sfuggono ai rivelatori.

Possiamo considerare ogni neutrino come una miscela delle tre diverse masse caratteristiche al loro sapore che continuamente interferiscono l’una con l’altra come fanno frequenze radio diverse, sommandosi o abbantendosi ritmicamente cambiando le loro proporzioni. La probabilità di trovare un dato tipo di neutrino ad una certa distanza dal punto in cui è stato creato dipende valori chiamati angoli di mescolamento (indicati con la lettera greca theta $\theta$), che esprimono la proporzione tra le diverse masse – autostati –  1, 2 e 3 del neutrino.

(continua)


Note: