Materia esotica per le stelle a neutroni

[latexpage]

I componenti della materia sono fatti di leptoni (come l’elettrone e i neutrini) e quark (che costituiscono protoni, neutroni ed altre particelle). I quark sono molto diversi dalle altre particelle. Oltre alla carica elettrica particolare ($\frac{1}{3}$ o $\frac{2}{3}$ quella dell’elettrone e del protone), essi possiedono infatti anche un diverso tipo di carica ​​chiamato colore. Il peculiare meccanismo in cui opera questa carica può aiutarci a far luce su alcuni oggetti astrofisici più esotici: le stelle di neutroni.

Le combinazionii di carica  colore devono produrre un colore neutro (ovvero si devono annullare) per produrre una particella libera dalla Interazione Forte.

Le combinazioni di carica colore devono produrre un colore neutro (ovvero si devono annullare) per produrre una particella libera dalla Interazione Forte.

I quark sono particelle elementari (fermioni,  cioè che obbediscono alla statistica di Fermi-Dirac e  al principio di esclusione di Pauli) che risentono dell’Interazione Forte, una delle 4 forze fondamentali. I mediatori principali di questa forza sono i gluoni, bosoni senza massa come gli analoghi del campo elettromagnetico, i fotoni. Ma a differenza di questi che non hanno carica, i gluoni sono portatori di una particolare forma di carica chiamata colore 1, per analogia al comportamento dei colori primari dello spettro visibile, non perché essi siano colorati. Per il modo in cui la forza forte agisce, è impossibile osservare un quark libero.

La carica di colore  è esapolare, composta cioè da 3 cariche (verde, rosso e blu) e 3 anticariche (anti-verde, anti-rossso e anti-blu) ) che si comportano in maniera analoga ai colori primari: quando la somma delle cariche di colore restituisce un colore neutro, come il bianco, , allora la particella composta è rilevabile. Così si possono avere particelle di colore neutro composte da tre quark con i colori verde rosso e blu chiamate barioni (i protoni e i neutroni sono i barioni più comuni), oppure particelle composte da due soli quark possessori di un colore e il suo corrispettivo anti-colore chiamate mesoni, che svolgono un ruolo importante nella coesione del nucleo atomico. Per l’interazione forte, questi sono solo i più comuni modi per ottenere un adrone. Infatti è previsto che ci siano anche altre combinazioni di carica colore per formarne una di colore neutro. Uno di questi, il tetraquark, combina fra loro quattro quark, dove due di essi hanno un colore particolare e gli altri due posseggono i corrispettivi anti-colori.

LHCb-Z (4430)

La particella$Z (4430)^-$ appare composta da un quark charm, , un anti-charm , un down e un anti-up. I  punti neri rappresentano i dati, la curva rossa il risultato della simulazione dello stato previsto per la $Z (4430)^-$. La  curva tratteggiata marrone indica quello che ci aspetterebbe  in assenza di questa. Questo dato afferma l’esistenza dell’esotica particella con 13,9 σ (cioè che il segnale è 13,9 volte più forte di tutte le possibili fluttuazioni statistiche combinate).

Segnali sull’esistenza di questo adrone esotico si ebbero nel 2007 dall’Esperimento Belle [cite]http://arxiv.org/abs/0708.1790[/cite],  che ricevette il nome di $Z (4430)^-$ 2. Ora questa particella con una massa di $4430 MeV/c^2$  (circa quattro volte quella del protone) è stata confermata dall’Esperimento LHCb di Ginevra con una significatività molto alta (13,9 $\sigma$) [cite]http://arxiv.org/abs/1404.1903v1[/cite]. Questo significa che i quark si possono combinare fra loro in modi molto più complessi di quanto finora osservato 3. Questo è un enorme passo avanti nella comprensione di come si può comportare la materia in condizioni estreme. Barioni e mesoni esotici detti glueball 4 o una miscela di questi può esistere in un solo posto in natura: nel nucleo di una stella a neutroni.

Le stelle compatte inferiori alle 1,44 masse solari sono nane bianche, stelle in cui la pressione di degenerazione degli elettroni riesce a controbilanciare la gravità. Oltre questo limite, chiamato limite di Chandrasekhar, il peso della stella supera il limite di degenerazione degli elettroni che si fondono coi protoni dando origine a una stella a neutroni 5.

quark_star (1)

Credit: NASA/Chandra

Il risultato è una stella fatta da soli neutroni dominata dalla gravità che in questo caso vince sulla repulsione elettrica. Di questo stato esotico della materia degenere non si sa molto di più delle speculazioni teoriche, ma questo potrebbe essere solo l’inizio: si calcola che la densità media delle stelle di neutroni vada da $3,7$ a $5,9 \times 10^{14} g/cm^3$ (un nucleo atomico ha una densità stimata di circa $3 \times 10^{14} g/cm^3$), con la densità passi da circa $1 \times 10^6 g/cm^3$ della superficie fino ai $6$ o $7 \times 10^{14} g/cm^3$ del loro nucleo. Come il limite di Chandrasekhar delinea il limite inferiore di una stella di neutroni, esiste un limite superiore la quale nessun’altra forza riesce ad impere il collassso gravitazionale che porta a formare un buco nero. Questo limite superiore è il limite di Tolman-Oppenheimer-Volkoff. È in questo intervallo di massa che esistono le stelle di neutroni [cite]http://www.scribd.com/doc/219247197/The-maximum-mass-of-a-neutron-star[/cite]. È probabile che solo le stelle di neutroni più leggere siano composte di neutroni degeneri, mentre man mano sale la massa verso il limite superiore la materia di neutroni degeneri ulteriormente in prossimità del nucleo e poi sempre più verso il guscio esterno in un brodo indistinto di quark tenuti insieme dalla gravità che riesce a soppiantare perfino l’interazione forte [cite]http://www.scribd.com/doc/219246949/Nuclear-equation-of-state-from-neutron-stars-and-core-collapse-supernovae[/cite]. Il tetraquark individuato dall’LHC è sicuramente solo il primo di una lunga serie di adroni esotici che può aiutare a comprendere meglio questi stati degeneri della materia che immaginiamo essere al centro di questi minuscoli e compatti resti stellari.


Note:

Echi da un lontano passato, le novità

[latexpage]

I risultati di BICEP2

Modelli di impronte di polarizzazione nella Radiazione Cosmica di Fondo.

Modelli di impronte di polarizzazione nella Radiazione Cosmica di Fondo.
L’E-mode (per analogia col campo elettrostatico) indica una perturbazione di tipo scalare unicamente dovuta a fluttuazioni di densità di energia del campo inflatone (φ) del mezzo.
Il B-mode invece è di tipo tensoriale ed è dovuto  alla propagazione di onde gravitazionali.
Ulteriori informazioni sono disponibili qui

Per comprendere meglio il seguito dell’articolo, occorre anche qui partire da principio. La polarità è una proprietà ondulatoria comune a molti fenomeni fisici dei campi come ad esempio quello elettromagnetico  che possono oscillare con orientamenti diversi 1. È l’interazione del flusso radiativo col mezzo di propagazione a determinare molto spesso la polarizzazione della radiazione, come quando osserviamo la luce di una stella lontana che viene polarizzata dalle polveri interstellari. Come la radiazione termica stellare che in origine non è polarizzata, è lecito sostenere che anche la CMB quando sorse dal disaccoppiamento materia-energia 380000 anni dopo il Big Bang non  lo fosse. Ma dovremmo aspettarci anche che un processo violento come quello inflattivo seguito al Big Bang che ha dato origine all’Universo può aver lasciato la sua impronta sulla radiazione che descrive il tessuto del cosmo. E in effetti eccessi di polarizzazione nelle anisotropie della CMB furono notate fin dal 2002 da John Kovac  [cite]http://arxiv.org/abs/astro-ph/0209478[/cite].

Le onde gravitazionali infllative producono un debole schema di torsione nella polarizzazione della CMB noto come B-mode.
In questa immagine le fluttuazioni di densità – che sono comunque preponderanti nella polarizzazione della CMB – sono state annullate. Quello che resta è l’impronta B-mode rilevata da BICEP2.
I due diversi colori mostrano la chiralità registrata nella polarizzazione della radiazione cosmica di fondo.

Nella mappa della polarizzazione nella CMB ricavata dal celebre team del BICEP2 [cite]http://arxiv.org/abs/1307.5830[/cite] appaiono dei piccoli tratti che indicano la direzione dell’oscillazione del campo elettrico nella radiazione elettromagnetica. Da una mappatura così ampia si possono osservare i due diversi tracciati (E-mode e B-mode) spiegati meglio nella figura qui sopra.

Sia che le perturbazioni gravitazionali che di densità derivano dalle fluttuazioni quantistiche durante lo stadio inflativo; le loro dimensioni indicano quindi le scale di energia in gioco in quel momento. Le perturbazioni di densità (E-mode) che sono state rilevate sono attribuite all’oscillazione quantistica dell’ipotetico campo inflatone (indicato dalla lettera $\varphi$), legato alla densità di energia potenziale, da cui discende l’energia effettiva dell’Universo. Le perturbazioni gravitazionali (B-mode) invece sono assai diverse. Esse non dipendono da un ancora ipotetico campo, ma sono frutto di una forza invece ben conosciuta. Generalmente nei modelli inflativi semplici, si assume che l’ampiezza delle onde gravitazionali sia direttamente proporzionale all’energia inflativa. Se tale ipotesi fosse corretta, i dati di BICEP2 indicherebbero per le onde gravitazionali  un valore appena al di sotto della scala di Plank.
BICEP2 indica che le grandezze in gioco in quel momento erano enormi: circa $10^{16} GeV$, cioè circa 12 ordini di grandezza più grande di quella dell’HLC di Ginevra. Questo è un dato molto importante perché pone limiti alle teorie GUT (Grand Unified Theory) che dovrebbero accadere a $10^{15} GeV$ e allo sfuggente decadimento del protone che dovrebbe avvenire a temperature appena un po’ più basse 2. Questo conferma che l’inflazione si è verificata intorno alla scala GUT, poco al di sotto della scala di Planck.

Riassumendo i tratti che distinguono l’Universo, questo risulta essere omogeneo, sostanzialmente isotropo su grandi scale, e piatto. Di conseguenza,  le perturbazioni scalari di densità dovevano essere correlate alla scala dell’orizzonte cosmologico, avere una distribuzione Gaussiana ed essere invarianti di scala.  Questo significa che globalmente tutte le perturbazioni  dovrebbero aver interessato tutta l’energia potenziale disponibile, e questo corrisponde esattamente a quanto il satellite Plank dimostrò nel 2003 [cite]http://arxiv.org/abs/1303.5082[/cite].
Un altro importante risultato è lo sfoltimento di tante alternative proposte via via negli anni per spiegare il ritratto che le osservazioni avevano fatto dell’Universo. Quindi addio alle interpretazioni ekpyrotiche 3 [cite]http://arxiv.org/abs/hep-th/0103239[/cite] e a tante altre teorie che limitavano o cercavano di escludere il modello inflazionario. Comunque per dovere di cronaca ci sono anche altre proposte che mettono in dubbio l’interpretazione inflazionistica dei risultati di BICEP2 [cite]http://arxiv.org/abs/1403.5166[/cite] che potrebbero rimettere in auge le teorie soppresse.

Una simulazione computerizzata del modello di Inflazione Caotica di A.  Linde. Le cime rappresentano nuovi Big Bang, la cui altezza è determinata dalla loro energia. i diversi colori indicano leggi fisiche diverse che sui picchi non sono ancora stabili, Solo le valli (una è la nostra) dispongono di leggi fisiche stabili.

Una simulazione computerizzata del modello di Inflazione Caotica di A. Linde.
Le cime rappresentano nuovi Big Bang, la cui altezza è determinata dalla loro energia. i diversi colori indicano leggi fisiche diverse che sui picchi non sono ancora stabili, Solo le valli (una è la nostra) dispongono di leggi fisiche stabili.

Quindi pare che le anisotropie nella temperatura della radiazione cosmica di fondo e la distribuzione delle struttura a larga scala osservate nell’Universo proverrebbero dalle fluttuazioni quantistiche nel campo inflatone, mentre le perturbazioni tensoriali responsabili della polarizzazione B-mode riscontrate da BICEP2 sarebbero il risultato delle fluttuazioni quantistiche del gravitone. Il momento inflazionistico attraversato dall’Universo deriva quindi tutto da queste due.
Conseguenza non poi tanto indiretta – se le osservazioni venissero confermate – è che la mitica Gravità Quantistica, tanto a lungo cercata dai fisici e cosmologi, è forse scritta nel cielo. Forse, perché anche se  le fluttuazioni quantistiche del campo gravitazionale offrono la spiegazione più semplice e immediata di ciò che viene osservato, ci possono essere anche altri meccanismi – come le stringhe – che possono riprodurre gli stessi schemi della polarizzazione B-mode [cite]http://arxiv.org/abs/1109.0542[/cite].

Un modello che si adatta alle osservazioni esiste già ed è abbastanza in accordo con i dati osservati. È il modello dell’inflazione caotica di Andrei Linde, descritto verso la metà degli anni ’80 e rivisto di recente (2010) [cite]http://arxiv.org/abs/1008.3375[/cite], ispirato per implementare in esso anche la gravità quantistica.
Il modello di Linde suggerisce che non ci sia stato un unico Big Bang, piuttosto che il substrato che ha originato il nostro ribolla di infiniti Big Bang e di infiniti stati inflativi innescati dalle fluttuazioni quantistiche dell’inflatone. Le diverse energie disponibili dal decadimento sarebbero responsabili di diversi punti di rottura della simmetria delle costanti fisiche e delle conseguenti leggi che le governano. In pratica questo modello rende possibile l’esistenza di altri universi governati da diverse leggi e costanti fisiche in cui le stelle non potrebbero essersi mai accese, altri dominati dai buchi neri e così via.
Questa idea rende gli universi molto più simili ai semi di un frattale in dinamica evoluzione: così simili eppure così diversi tra loro, mentre il quadro generale dei multiversi a grande scala appare comunque omogeneo.
Un’idea così rivoluzionaria che non solo risolve i ben noti problemi dell’isotropia e della geometria dell’Universo (per non parlare dei monopoli magnetici che ho voluto tralasciare nella trattazione di questi due articoli piuttosto travagliati) ma che offre una elegante interpretazione al noto dilemma introdotto dal Principio Antropico: noi semplicemente viviamo in uno degli infiniti universi in cui le leggi fisiche hanno reso possibile la nostra esistenza.

A questo punto non resta che la conferma dei dati espressi da BICEP2 per sapere quale sia la natura dell’Universo.


Note:

Il primo sistema di anelli attorno ad un asteroide

Loading player…

eso1410c

L’asteroide Chariklo in una rappresentazione artistica con due anelli. Crediti: ESO/L. Calçada/M. Kornmesser/Nick Risinger. Fonte ESO: http://www.eso.org/public/italy/images/eso1410c/

La grande scoperta è arrivata dall’ESO: il remoto asteroide Chariklo è circondato da due densi e stretti anelli. Telescopi in ben sette luoghi differenti nel Sud Ameria, tra cui il telescopio danese di 1,54 metri e il telescopio TRAPPIST all’Osservatorio di La Silla dell’ESO in Cile sono stati utilizzati per fare questa sorprendente scoperta ai confini del nostro Sistema Solare interno, ossia oltre l’orbita di Nettuno.

Questo risultato suscita grande interesse e dibattito dato che Chariklo rappresenta il più piccolo oggetto, oltre che estremamente lontano, all’interno del nostro Sistema Solare ad avere un sistema di anelli. E’ il primo asteroide ad avere questa caratteristica a parte i quattro pianeti giganti gassosi: Giove, Saturno, Urano e Nettuno.

La scoperta è avvenuta durante un transito sul disco della stella … (continua su)

Echi da un lontano passato, la storia

[latexpage]

Nel Modello Cosmologico Standard  l’universo ha avuto inizio  partendo da una singolarità di densità infinita e raggio tendente a zero. Però questa è soltanto una descrizione che deriva della versione classica della Relatività Generale. Ma non ha senso applicare la Relatività Generale a tempi inferiori al tempo di Planck 1 e a energie così alte 2 quindi ha senso chiedersi quali fossero le proprietà dell’universo solo subito dopo il tempo di Planck; quelle sono le condizioni iniziali che chiamiamo Big Bang.

big_bangL’annuncio, preceduto da diversi rumors nella giornata precedente,  è arrivato lunedì scorso, 17 marzo 2014, alle 16:00 GMT (alle 17:00 locali).
Finalmente, è stata rilevata l’impronta lasciata dalle onde gravitazionali sulla radiazione cosmica di fondo (CMB), la luce più antica del nostro Universo, impressa in tutto lo spazio quando l’Universo aveva appena 380 mila anni.
>A lungo era stata cercata questa testimonianza, finora senza risultato. Ma per poter comprendere meglio quello che è stato scoperto è meglio partire dal principio, o meglio da Edwin Hubble e Milton Humason quando nel 1929 dimostrarono che tutte le galassie si stanno allontanando l’una dall’altra indistintamente, come se lo spazio si stesse espandendo.

Come conseguenza all’espansione appena scoperta, una volta l’Universo deve essere stato più piccolo, fino ad un momento in cui tutto lo spazio e la materia erano racchiusi in un punto.
Questa era la teoria dell’atomo primigenio del gesuita Georges Edouard Lemaître,  basata sulle equazioni della relatività generale di Albert Einstein e sul lavoro di Alexander Friedmann formulata un paio di anni prima della scoperta di Hubble e Humason.
Paradossalmente a dare il nome a questa teoria poi divenuta famosa, fu uno dei più acerrimi oppositori: l’astronomo britannico Fred Hoyle, strenuo sostenitore del modello dell’‘universo stazionario, che nel ’49 chiamò l’idea di Lemaître Big Bang.

Wilson e Pensias con la loro antenna scoprirono la Radiazione Cosmica di Fondo. Per questo vinsero il Premio Nobel nel 1978.

Wilson e Penzias con la loro antenna scoprirono la Radiazione Cosmica di Fondo.
Per questo vinsero il Premio Nobel nel 1978.

Fu solo dopo il 1964 che il dibattito tra queste due teorie si risolse in favore del Big Bang. In quell’anno infatti due ingegneri che lavoravano presso i  Bell Telephone Laboratory stavano mettendo a punto un’antenna per le comunicazioni satellitari ma avevano un problema: ovunque puntassero il loro corno – era la forma dell’antenna – ricevevano un segnale di disturbo. Anche dopo che una coppia di piccioni che aveva nidificato nell’antenna fu sloggiata (qualche malizioso suggerì che ci fu un succulento arrosto a base di piccioni in quei giorni a  Holmdel Township, nel New Jersey), il disturbo rimase. Eliminati ogni difetto intrinseco nell’impianto e scartato ogni altra ipotesi di origine terrena, non rimaneva che seguire l’esempio di Karl Jansky, affidarsi all’origine extraterrestre. Solo che questo disturbo era isotropo nel cielo, non seguiva il moto siderale del pianeta. Era stata scoperta la prima luce dopo il Big Bang che permeava il cosmo, la Radiazione Cosmica di Fondo (CMB).
La più grande prova della teoria del Big Bang, la CMB, fu anche la sua maledizione: perché questa radiazione è così isotropa? C’è da aspettarsi comunque una certa disomogeneità nel cosmo in seguito a questo evento così drammatico, eppure invece no.
In ogni istante e per qualsiasi osservatore nell’Universo esiste un raggio di universo osservabile chiamato orizzonte cosmologico, che corrisponde alla distanza che la luce ha percorso dall’istante del Big Bang, in questo momento per il nostro Universo è 13,82 miliardi di anni luce (ad esempio, 10 secondi dopo alla nascita dell’Universo l’orizzonte cosmologico era di soli 3 milioni di chilometri). In pratica, l’orizzonte cosmologico cresce insieme all’età dell’Universo. Questo significa quindi che per un qualsiasi osservatore è impossibile vedere, influenzare, o essere influenzato,  oltre questo limite.

Mentre l'osservatorepuò osservare una buona parte degli orizzonti cosmologici A e B, da questi solo un piccola parte dell'altro e concesso di vedere. Credit: Il Poliedrico

Mentre l’osservatore centrale può osservare una buona parte di spazio degli orizzonti cosmologici A e B, da questi solo un piccola parte dell’altro è concesso di vedere.
Credit: Il Poliedrico

Spingendo all’estremo di questo concetto, si nota che due regioni lontane fra loro nell’universo, oltre il proprio orizzonte cosmologico, semplicemente non possono conoscere nulla delle condizioni fisiche dell’altra. Eppure l’Universo appare nel suo complesso omogeneo e isotropo, come mostra la CMB. Stesse leggi e condizioni fisiche governano regioni che non possono mai avere contatto tra loro.
Poi un altro problema affliggeva il Big Bang originale: Perché l’Universo appare piatto?
Si sapeva che l’Universo era in espansione. Questo significa ovviamente che la sua densità media cambia nel tempo. Se la densità media fosse stata anche di poco superiore di una certa densità detta critica 3, l’Universo sarebbe collassato rapidamente su sé stesso sotto il suo peso; se fosse stata appena al di sotto l’Universo si sarebbe rapidamente espanso raffreddandosi  troppo velocemente impedendo così alla materia di coagularsi in stelle.
Dopo quasi 14 miliardi di anni  invece l’Universo ci mostra strutture complesse che vanno dai superammassi di galassie agli atomi sintetizzati dalle stelle, eppure nel suo complesso è sostanzialmente omogeneo e con un rapporto $\Omega$ molto prossimo a 1.
Queste erano le domande irrisolte della teoria dell’Atomo Primordiale fino alla metà degli anni ’70, quando in Unione Sovietica David Kirzhnits e il suo allievo Andrei Linde studiando le condizioni fisiche che erano prossime al Big Bang si accorsero che le leggi fondamentali di campo – di gauge – della fisica quantistica rispondevano e potevano essere scritte allo stesso modo 4 l’interazione forte, l’interazione debole e l’elettromagnetismo -e probabilmente anche la gravità -sembravano essere un’unica forza ancestrale nata col Big Bang 5. Da allora teorie simili ne sono uscite diverse, per spiegare l’asimmetria tra materia e antimateria, la gravità quantistica, etc.
Però gli studi sovietici erano in gran parte sconosciuti in Occidente, fino a che nel 1980 Alan Guth le riscoprì e le inserì in un contesto più ampio. Ipotizzando un processo d’espansione molto rapido dell’Universo appena nato, così si risolvevano in modo elegante tutti i difetti del Big Bang fino ad allora esposti.

big bang Secondo la teoria inflazionistica di Alan Guth, appena prima dell’evento Big Bang, ma comunque in un istante successivo al Tempo di Plank ($t_p$), una regione adimensionale di falso vuoto 6 dominata da un campo scalare chiamato inflatone, decade verso uno stato di minima energia per effetto di fluttuazioni quantistiche.  Una delle peculiarità del falso vuoto è la sua densità di energia, grande e negativa. Per la Relatività Generale una densità di energia positiva crea un campo gravitazionale attrattivo. La densità di energia negativa del falso vuoto crea quindi un campo gravitazionale repulsivo, il motore del fenomeno inflattivo.
Appena $10^{-35}$ secondi dopo la transizione di fase del falso vuoto la forza gravitazionale repulsiva porta questa regione ad espandersi e a raddoppiare il suo volume ogni $10^{-34}$ secondi. Questo fenomeno iperrafredda e stira le disomogeneità indotte dalle fluttuazioni quantistiche nella fase precedente, mentre rompe la simmetria che tiene unite le forze di gauge  in condizioni estreme di densità e temperatura.  .$10^{-32}$ secondi la densità di energia diviene positiva e  la gravità assume il ruolo di forza solo attrattiva e cessa quindi l’era inflattiva del Big Bang. Quando termina l’inflazione il campo inflatone raggiunge il suo minimo potenziale e decade in radiazione che riscalda nuovamente l’Universo.
L’Universo neonato adesso ha un rapporto di densità $\Omega$ prossimo a 1 qualunque sia stato il suo valore precedente, la sua geometria ora è prettamente euclidea e può espandersi all’infinito.

Continua …


Note:

Segnali di Materia Oscura nei pressi del nucleo galattico

[latexpage]

Una coppia di neutralini si annichila e decade in una pioggia di normali particelle elementari. Credit: Il Poliedrico

Una coppia di neutralini si annichila e decade in una pioggia di normali particelle elementari.
Credit: Il Poliedrico

All’interno del Modello Cosmologico Standard,  la Teoria della Nucleosintesi Primordiale descrive esattamente la composizione [cite]http://www.einstein-online.info/spotlights/BBN[/cite] della materia presente nell’Universo e indica che  l’84,54% di questa è di natura non barionica, cioè non è composta da leptoni e quark ma da una forma di materia totalmente sconosciuta che non possiede alcuna carica elettromagnetica o di colore chiamata WIMP (Weakly  Interacting  Massive  Particle). Questa è una classe di nuove e ipotetiche particelle con una massa compresa tra poche decine e un migliaio di $GeV/c^2$ (un $GeV/c^2$ è circa la massa di un atomo di idrogeno). L’esistenza di queste particelle è stata proposta per risolvere il problema della materia oscura teorizzata dal Modello Cosmologico Standard. L’esistenza delle WIMP non è stata ancora provata con certezza, però alcune delle caratteristiche fondamentali che queste particelle dovrebbero possedere indicano in quale direzione cercare.
L’esistenza stessa delle strutture a piccola scala come le galassie e gli ammassi di galassie esclude che da una fase inizialmente isotropa come quella descritta dalla radiazione cosmica di fondo queste si siano potute evolvere; la presenza di massicce quantità di materia oscura calda ($v >95\%  c$) avrebbe finito invece per dissolverle. Per questo, non escludendone a priori l’esistenza 1, l’esistenza di una sola forma di materia oscura calda è dubbia. A questo punto non resta che ipotizzare una forma di materia oscura che si muove a velocità non relativistiche, fino all’1 per cento di quella della luce.
Il problema nasce con il Modello Standard che non prevede altre forme di materia se non quelle finora conosciute. Per ovviare a questo inconveniente e ad altri problemi irrisolti dal Modello Standard 2 sono state elaborate dozzine di teorie alternative dette Beyond the Standard Model (BSM, ovvero oltre il Modello Standard) che propongono soluzioni – almeno in parte – i problemi menzionati nella nota e a quello oggetto di questo articolo.

[table “49” not found /]

Un po’ tutte le BSM introducono nuove particelle, una di queste è la Supersimmetria. La Supersimmetria introduce una nuova classe di particelle chiamate superpartner all’interno del classico Modello Standard. Nonostante che il tentativo di identificare questi nuovi partner supersimmetrici – sparticelle – sia per ora fallito, le BSM riescono agevolmente a risolvere i problemi che il Modello Standard non è mai riuscito a superare.
Secondo queste teorie, i fermioni, che costituiscono la materia, hanno come superpartner altrettanti bosoni che trasmettono le forze, mentre i bosoni conosciuti hanno i loro fermioni superpartner. Poiché le particelle e le loro superpartner sono di tipo opposto, il loro contributo energetico al campo di Higgs si annulla.

Dalla tabella qui accanto si nota come per ogni bosone di gauge si ha un superpartner detto gaugino, mentre per il gravitone esiste il gravitino. Il problema essenziale è nella massa di questi superpartner che, almeno in teoria, dovrebbe essere la stessa delle altre particelle normali corrispondenti. In realtà non pare così. Finora nessuno di questi partner supersimmmetrici è stato ancora mai rilevato, tant’è che è stato supposto che anche per le superparticelle sia accaduto un fenomeno di rottura di simmetria, portando di fatto ad avere dei partner supersimmetrici molto più massicci dei loro corrispondenti di quanto ci si aspettasse, oltre il migliaio di $GeV$.
I più promettenti candidati della materia oscura fredda  sono quindi i più leggeri superpartners indicati dalle BSM. Escludendo i superpartners degli elettroni e dei quark che anch’essi dispongono di carica elettrica e di colore, rimangono disponibili lo zino (il superpartner fermionico del bosone Z), il fotino e l’higgsino, tutti altrettanti fermioni 3. Queste sparticelle in sé non sono rilevabili, interagiscono solo con l’interazione debole e la gravità ma possono legarsi tra loro formando una particella esotica molto particolare: il neutralino. In quanto miscela quantistica di diverse altre sparticelle, ne possono esistere fino a 4 tipi diversi di neutralini, tutti fermioni di Majorana e senza alcun tipo di carica, il più leggero dei quali è in genere ritenuto stabile. Il fatto che i neutralini  siano fermioni di Majorana è molto importante, perché dà in qualche modo la chiave per rilevarli, se esistono. Essendo sia particelle che antiparticelle di loro stessi, esiste la possibilità che due diversi neutralini dello stesso tipo si scontrino e si annichilino di conseguenza. Il risultato è una pioggia di radiazione gamma e di altre particelle elementari come sottoprodotti, esattamente come avviene per le particelle conosciute quando si scontrano  con le loro rispettive antiparticelle [cite]http://arxiv.org/abs/0806.2214[/cite].

 Le mappe a raggi gamma prima (a sinistra) e le mappe a cui è stato sottratto il piano galattico (a destra), in unità di photons/cm2 / s / sr.I telai destra contengono chiaramente significativo eccesso centrale e spazialmente esteso, con un picco a ~ 1-3 GeV. I risultati sono mostrati in coordinate galattiche, e tutte le mappe sono state levigate da una gaussiana 0,25

Le mappe a raggi gamma prima (a sinistra) e le mappe a cui è stato sottratto il piano galattico (a destra), in unità di fotoni/cm2/s/sr.
Le immagini sulla destra mostrano un significativo eccesso centrale e spazialmente esteso, con un picco a ~ 1-3 GeV. I risultati sono mostrati in coordinate galattiche, e tutte le mappe sono state levigate da una gaussiana di 0,25°.

E dove cercare la materia oscura, questi neutralini che ne sono soltanto un aspetto di un panorama ben più ampio? Se la materia oscura è davvero sensibile alla gravità, perché non cercarla dove la gravità è più accentuata, ovvero nei pressi dei nuclei galattici e nelle stelle? Nei pressi dei buchi neri centrali i neutralini sarebbero costretti a muoversi piuttosto rapidamente sotto l’influenza gravitazionale, e quindi anche a collidere e annichilirsi con una certa facilità. Il risultato delle annichilazioni e del loro decadimento successivo dovrebbe essere così rilevabile.
Appunto questo è stato fatto, studiando i dati che in  5 anni di attività il Fermi Gamma-ray Space Telescope   ha prodotto. Un gruppo di scienziati coordinato da Dan Hooper ed altri, ha esaminando i dati forniti dal satellite riguardanti il centro della nostra galassia e creato una mappa ad alta risoluzione che si estende per 5000 anni luce dal centro della galassia nel regno dei raggi gamma [cite]http://arxiv.org/abs/1402.6703[/cite]  [cite]http://arxiv.org/abs/0910.2998[/cite].
Una volta eliminato il segnale spurio prodotto da altri fenomeni naturali conosciuti, come ad esempio le pulsar millisecondo nei pressi del centro galattico, il risultato (visibile nei riquadri di destra dell’immagine qui accanto) è interessante. Qui risalta un segnale attorno ai  31-40 $GeV$ che gli autori dello studio attribuiscono all’annichilazione di materia oscura e dei suoi sottoprocessi di decadimento per una densità di materia oscura nei pressi del centro galattico stimata attorno ai 0,3 $GeV/cm^3$.
Le dimensioni di questa bolla di materia oscura non sono note, i dati di questo studio dimostrano che fino a 5000 anni luce la distribuzione angolare della materia oscura è sferica e centrata sul centro dinamico della Via Lattea (entro ~ 0,05° da Sgr A*), senza mostrare alcun andamento preferenziale rispetto al piano galattico o la sua perpendicolare.
Questo dato non è poi lontano da quello estrapolato da Lisa Randall e Matthew Reece dell’Università di Harvard, che sostengono di aver calcolato le dimensioni e la densità di un disco di materia oscura che permea la Via Lattea [cite]http://arxiv.org/abs/1403.0576[/cite] attraverso lo studio delle periodiche estinzioni di massa avvenute sulla Terra e le tracce di impatto di meteoriti di grandi dimensioni sul nostro pianeta 4. Questo disco avrebbe un raggio di circa 10000 anni luce e una densità di una massa solare per anno luce cubico.
A questo punto potrà essere il satellite Gaia, che mappando il campo gravitazionale della Galassia, potrà accertare o meno l’esistenza di questo o di un altro disco che permea la Via Lattea.

Il lavoro del gruppo di Hooper, che per ora è solo un pre-print, è piuttosto incoraggiante nella sua tesi. Se venisse confermato, o nei dati o da altre osservazioni su altre galassie, potrebbe essere la conferma dell’esistenza della materia oscura non barionica fredda che da anni è stata ipotizzata e finora mai confermata. Intanto, altri lavori [cite]http://arxiv.org/abs/1402.2301[/cite] indicano una debole emissione nei raggi X in altre galassie proprio dove ci si aspetta di trovare le traccie dovute al decadimento del neutrino sterile, un’altra ipotetica particella non prevista dal Modello Standard.
La fine di questo modello? Non credo, semmai sarebbe più corretto parlare di un suo superamento da parte delle BSM. Così come la Meccanica Newtoniana si dimostra comunque valida fino a velocità non relativistiche, e nessuno penserebbe di sostituirla con la Relatività Generale per calcolare ad esempio l’orbita di una cometa, Il Modello Standard rimarrà valido fino a quando non sarà stata scritta una Teoria del Tutto elegante e altrettanto funzionante.


Note:

Un altro caso marziano: Yamato 000.593

Yamato 000593

Questa è una serie di immagini riprese al microscopio elettronico a scansione di una sezione sottile lucida di Yamato 000.593. Il iddingsite presente in questo meteorite è un minerale argilloso (vedi nota articolo). Qui sono evidenti anche dei microtuboli 
La barra di scala in basso a sinistra è di 2 micron.
Credit: NASA

Dopo il pluridecennale caso di ALH84001 1, adesso a tenere banco nella comunità scientifica è un altro meteorite marziano, conosciuto come Yamato 000.593. Il meteorite, che pesa 13,7 chilogrammi, è una acondrite trovata durante la spedizione giapponese Antarctic Research Expedition del 2000 presso il ghiacciaio antartico Yamato. Le analisi mostrano che la roccia si è formata circa 1,3 miliardi di anni fa da un flusso di lava su Marte. Circa 12 milioni di anni fa un violento impatto meteorico ha scagliato dei detriti dalla superficie di Marte fin nello spazio e, dopo un viaggio  quasi altrettanto lungo, uno di questi è caduto in Antartide circa 50.000 anni fa. Adesso, gli stessi autori che nel 1996 annunciarono la scoperta di tracce di batteri alieni all’interno di ALH840001 [cite]http://www.sciencemag.org/content/273/5277/924[/cite], si sono concentrati sullo studio del meteorite Yamato [cite]http://online.liebertpub.com/doi/abs/10.1089/ast.2011.0733[/cite] scoprendo così la presenza di un tipo di argilla chiamata iddingsite 2 che si forma in presenza di acqua liquida [cite]http://www.researchgate.net/publication/234234597_Yamato_nahklites_Petrography_and_mineralogy[/cite].

caratteristiche incorporate in uno strato di iddingsite.  Sedi di EDS spettri delle sferule  e lo sfondo è dato dal rosso e  cerchi blu, rispettivamente. (B) EDS spettri  di sferule (rossi) e lo sfondo (blu).  Le sferule sono arricchiti * 2 volte in  carbonio rispetto allo sfondo. (C)  Vista SEM delle caratteristiche spherulitic incassato  sia in un superiore (arancione falsi colori)  e strato inferiore di iddingsite. Credit: NASA

(A) Le nanostrutture ricche di carbonio incorporate in uno strato di iddingsite.
(B) Gli spettri delle sferule e lo sfondo sono evidenziati dai cerchi rosso e blu Le sferule mostrano il doppio di carbonio rispetto allo sfondo.
(C) Le sferule appaiono incassate tra due diversi strati di iddingsite: qui il superiore (in falsi colori) e uno inferiore.
Credit: NASA

Dai margini di queste vene di iddingsite partono delle strutture filamentose che contengono aree ricche di carbonio non dissimili al cherogene 3. La presenza di materiale organico complesso come il cherogene in una meteorite marziana non deve trarre in inganno: la sua presenza è stata registrata anche all’interno di molte altre meteoriti: le condriti carbonacee di solito ne sono abbastanza ricche [cite]https://www.jstage.jst.go.jp/article/jmps/100/6/100_6_260/_article[/cite]. Occorre anche ricordare che l’origine dei cherogeni non è necessariamente di origine biologica, visto che è presente anche nelle polveri interstellari [cite]http://www.aanda.org/articles/aa/abs/2001/41/aah2968/aah2968.html[/cite].

Un’altra caratteristica del meteorite Yamato sono le sferule particolarmente ricche di carbonio, circa il doppio rispetto all’area circostante, situate tra due diversi strati di minerale argilloso che le separa dai carbonati e i silicati circostanti. Solo un altro meteorite marziano , il Nakhla 4 presenta strutture simili 5.

La presenza di acqua liquida su Marte in un intervallo di tempo compreso tra 1,3 miliardi e 650 milioni di anni fa è stata confermata anche da altre meteoriti [cite]http://onlinelibrary.wiley.com/doi/10.1111/j.1945-5100.2000.tb01978.x/abstract[/cite] e da diversi studi effettuati con sonde automatiche, ma essa da sola non è sufficiente per confermare – o confutare – una antica presenza di vita marziana.
Oltre all’acqua occorrono una fonte di energia e i materiali necessari per il suo sviluppo, ma sopratttutto occorre che siano presenti opportune condizioni ambientali [cite]http://www.researchgate.net/publication/258613544_Technologies_for_the_Discovery_and_Characterization_of_Subsurface_Habitable_Environments_on_Mars[/cite] che – attualmente – Marte non ha.
Anche se la contemporanea presenza di materiali organici complessi come i cherogeni e l’acqua liquida sulla superficie del Pianeta Rosso suggeriscono che lì in passato vi siano stati alcuni fattori ambientali necessari a sostenere la vita, e nonostante alcune somiglianze strutturali di alcuni campioni provenienti da Marte con materiali terrestri, questo comunque non prova che la vita su Marte sia mai realmente esistita. Solo uno studio di laboratorio su campioni di suolo marziano può darci la risposta definitiva.
Per ora è meglio essere cauti.


Note:

Incontri ravvicinati del mattino

Tempo permettendo, mercoledì 26 febbraio alle 04:16 UTC (05:16 ora locale) si presenterà l’occasione di vedere e fotografare un magnifica congiunzione stretta tra Venere (fase 0.347, magn. -4.29) e Luna (fase 0.139, magn. -9.05), circa 13 minuti d’arco dai due bordi!
I più fortunati sono quelli che osserveranno il fenomeno dall’equatore, dove Venere entrerà in contatto col bordo della Luna già alle 3:17 UTC.
Ma lasciamo le immagini parlare da sole! Cieli sereni 🙂

Credit: Il Poliedrico

Credit: Il Poliedrico

Credit: Il Poliedrico

Credit: Il Poliedrico

Credit: Il Poliedrico

Credit: Il Poliedrico

Rielaborazione del concetto di Buco Nero

[latexpage]

Riuscire ad immaginare oggi un buco nero non è difficile, anzi. La fantascienza del XX secolo e il cinema hanno reso i buchi neri talmente familiari quasi da distorcerne il significato. Per la fisica invece sono semplicemente delle regioni di spazio dove materia – o energia – è collassata oltre una certa densità critica, dove la velocità di fuga supera anche la velocità della luce. Tutto quello che è o finisce all’interno di questa regione di spazio si suppone converga verso una singolarità, ovvero un punto geometrico di densità infinita, questo almeno per la meccanica relativistica. Il confine tra questa regione di spazio collassato e il resto dell’universo si chiama orizzonte degli eventi, sede di tutta una serie di bizzarri fenomeni quantistici ancora lungi dall’essere pienamente compresi.

La storia dei buchi neri

Credit: P. Marenfeld / NOAO / AURA / NSF, via Gemini Observatory at http://www.gemini.edu/node/11703

Credit: P. Marenfeld / NOAO / AURA / NSF, via Gemini Observatory at http://www.gemini.edu/node/11703

Il concetto di buco nero nacque molto prima della Relatività Generale. Verso la fine dell’Settecento, quando la Meccanica di Newton sembrava fosse in grado di spiegare la gravità, all’astronomo inglese John Michell (che per primo fornì un’accurata misura della costante gravitazionale) e, successivamente, il marchese Pierre-Simon Laplace, uno dei più grandi scienziati del periodo napoleonico,  ebbero indipendentemente l’idea che potessero esistere corpi celesti con una velocità di fuga superiore a quella della luce. In particolare si chiesero quale potesse essere il raggio $R$ di una stella di massa $M$ fissata la cui velocità di fuga fosse pari a quella della luce $c$ 1.

Tenendo conto della legge di conservazione dell’energia meccanica totale, si ricava: \[ \frac{1}{2} mv_f^2-G \frac{mM}{R}=0 \]

Da qui si può di conseguenza ricavare la velocità di fuga $v_f$: \[ v_f=\sqrt{\frac{2GM}{R}} \]

Dove $G$ e’ la costante di gravitazione universale. In questa formula il raggio $R$ della stella si trova al denominatore. Questo significa che se la massa della stella rimane costante mentre il suo raggio diminuisce (dato che la stella si contrae) la velocità di fuga aumenta. Con il diminuire del raggio, la velocità di fuga può aumentare fino a superare la velocità della luce nel vuoto $c$. Dato che secondo la relatività generale, niente può avere una velocità superiore a questo valore, è impossibile che un qualsiasi oggetto, anche un raggio di luce, possa allontanarsi da questa stella. Il valore critico del raggio $R$ per il quale la velocità di fuga diventa uguale alla velocità della luce nel vuoto lo calcolò esattamente nel 1916 Karl Schwarzschild, da cui ha preso il nome. Imponendo allora $v_f = c$ e $R = R_S$, si ricava:

\[ c^2=\frac {2GM}{R_S}

\]

da cui: \[ R_S=\frac{2GM}{c^2} \]

Queste stelle all’inizio vennero chiamate dark star, ma in seguito allo sviluppo della teoria ondulatoria e corpuscolare della luce il loro studio viene abbandonato quasi subito. Infatti la teoria ondulatoria e corpuscolare della luce stabilisce che i fotoni abbiano una massa nulla, quindi, secondo la teoria di Newton i fotoni non possono risentire dell’attrazione di alcuna stella, dunque le dark star non possono esistere.

Poi nel XX secolo la teoria dei buchi neri riaccese l’interesse degli scienziati, in seguito allo sviluppo di due potenti teorie che avrebbero riscritto la fisica macroscopica classica, la Relatività Ristretta e la Relatività Generale, e la fisica delle particelle, la Meccanica Quantistica. A questo punto, giusto per non generare equivoci, è bene sottolineare che col termine buco nero si intende una regione di spazio collassato su sé stesso. Quella parte di spazio ancora accessibile allo studio si chiama orizzonte degli eventi, sede di tutta una serie di fenomeni bizzarri che vanno dall’emissione spontanea di particelle (Radiazione di Hawking) fino a fenomeni di dilatazione temporale. La parte a noi sconosciuta e – per adesso – inconoscibile, è quello che rimane dell’oggetto (materia o radiazione) che ha prodotto lo spazio collassato: per la relatività generale è un punto geometrico di densità infinita chiamato singolarità. Dato che secondo la relatività generale niente può viaggiare più veloce della luce, dai buchi neri non sarebbe dovuto sfuggire niente, nemmeno un briciolo di radiazione termica. Per questa ragione all’inizio si era creduto che la temperatura dell’orizzonte degli eventi pari a zero Kelvin (ossia allo zero assoluto, $-273,15$ gradi centigradi). Questo assunto però era in contrasto con uno dei mostri sacri della fisica: il secondo principio della termodinamica.

Non importa se l'osservatore si avvicina a una stella o a un buco nero: egli percepirà la stessa curvatura nello spazio dovuta da un corpo di massa M.

Non importa se l’osservatore si avvicina a una stella o a un buco nero: egli percepirà la stessa curvatura nello spazio dovuta da un corpo di massa M.

Karl Schwarzschild, risolvendo le equazioni di Einstein (il campo gravitazionale è determinato dalla distribuzione di materia e dice alla materia come muoversi) in un caso molto particolare di perfetta simmetria sferica dello spazio-tempo, trovò una coincidenza molto interessante con la teoria newtoniana: se una stella di massa $M$ si contrae fino al raggio di Schwarzschild, il tempo sulla sua superficie si ferma e la luce che parte da quest’ultima subite un redshift infinito per cui non può raggiungere nessun osservatore al di fuori della stella. Cosa succede se il raggio della stella diventasse ancora più piccolo è ancora tema di dibattito. La relatività generale di Einstein non pone limiti al collasso della materia verso un punto di densità infinita. Per questo caso venne coniato il termine di singolarità di Schwarzschild, ma questa ipotesi fu accolta con grande scetticismo dalla comunità scientifica, oltre che dallo stesso Schwarzschild, convinti del fatto che la natura avrebbe trovato un modo per impedire simile ipotesi Grazie a una maggiore conoscenza e comprensione dei fenomeni fisici che avvengono all’interno delle stelle, tra gli anni Trenta e Cinquanta si arrivò alla conclusione che  l’ipotesi della singolarità era reale e che la relatività generale non aveva alcun problema con la materia concentrata entro il raggio di Schwarzschild, anzi essa era in grado di spiegare chiaramente cosa succedeva fino all’orizzonte degli eventi: materia e luce intrappolate al suo interno e senza possibilità alcuna di uscire: una regione dello spazio-tempo che non può comunicare con il resto dell’universo. Il termine buco nero venne introdotto da Wheeler alla fine degli anni Sessanta, quando l’importanza fisica di tali oggetti era oramai chiara alla maggior parte dei fisici teorici e a gran parte degli astrofisici. Molti furono gli esperimenti compiuti per la ricerca di buchi neri e in effetti i telescopi furono in grado di rilevare dei candidati sempre più promettenti, anche se ancora oggi l’osservazione certa di un buco nero non sia stata confermata in modo assoluto. Ma sono rimasti in pochi a dubitare della loro esistenza. Negli stessi anni gli strumenti matematici impiegati dalla relatività generale furono notevolmente ampliati, comprendendo meglio i limiti di tale teoria. Le equazioni di Einstein vennero risolte sotto ipotesi meno restrittive di quelle di Schwarzschild insieme ad altri risultati. Grazie al contributo di numerosi teorici della relatività generale emersero quattro leggi fondamentali che regolano la meccanica dei buchi neri e presentano una straordinaria somiglianza formale con i principi della termodinamica. Inizialmente tale somiglianza venne considerata una pura coincidenza, a causa di evidenti incompatibilità tra le variabili che determinano la meccanica di un buco nero e le variabili termodinamiche a cui dovrebbero corrispondere.

La termodinamica dei buchi neri

Secondo Hawking non vi è alcun pericolo di perdere la popolazione di buchi neri nel nostro universo. Attualmente   la radiazione di Hawking avrebbe un effetto rilevante solo sui buchi neri di piccola massa. 2. Questo perché la temperatura di un buco nero, cioè la radiazione di Hawking che emette il suo orizzonte degli eventi, deve superare la materia e l’energia che intercetta. Dato che la temperatura di un buco nero è inversamente proporzionale alla sua massa, allora con l’aumentare della massa la quantità di energia che riesce ad emettere diminuisce.
In questo modo, i buchi neri più massicci di quel limite, nati dal collasso di stelle  massicce 3 4, presentano un’emissione di energia piuttosto bassa. E dato che ricevono continuamente luce dalle stelle, dalla radiazione cosmica di fondo e dalla materia che vi cade, è evidente che tali buchi neri non cessano di crescere.
Sarà solo quando in una data imprecisata nel futuro tutte le stelle si saranno spente, la poca materia ancora rimasta in un universo ormai freddo si troverà al di là  della portata dei più grandi buchi neri ; quando la temperatura dell’universo sara’ inferiore a quella della radiazione di Hawking dei buchi neri neri che questi evaporeranno.

Nel 1974 il matematico inglese Stephen Hawking provò ad applicare la Meccanica Quantistica al concetto previsto dalla Relatività Generale conosciuto come Buco Nero. Questo dimostrò come i buchi neri non siano realmente neri, ma che emettano una temperatura di corpo nero inversamente proporzionale alla loro massa 5 6 [cite]10.1103/PhysRevD.23.287[/cite].

Il meccanismo della radiazione di Hawking introduce un paradosso insidioso e di difficile soluzione: la conservazione dell’informazione all’interno di un Buco Nero.

Detta così appare terribile, ma per la relatività generale non importa se la materia originale del buco nero sia materia o antimateria, di carica elettrica o  di un sapore quantico particolare, potrebbe essere un astronauta, un libro o l’intera vostra collezione di CD; di tutto quello che supera l’orizzonte degli eventi se ne perde traccia e la radiazione di Hawking che ne esce non  contiene alcuna informazione che consenta di risalire a ciò che era prima. Per la meccanica quantistica, lo stato di un sistema in qualsiasi momento è descritto da una funzione d’onda. Per la loro natura casuale, le particelle che compongono la radiazione di Hawking non hanno una funzione d’onda definita, ma solo una matrice di densità. Questo significa che la radiazione ha molte funzioni d’onda possibili, con una certa probabilità distribuita tra le particelle. Oltre all’incertezza usuale tipica della meccanica quantistica, nella radiazione si inserisce anche l’incertezza della funzione d’onda delle singole particelle: l’informazione è stata distrutta. Come Hawking ebbe a dire in proposito: “Non solo Dio gioca a dadi, ma a volte ci confonde gettandoli là dove non possono essere visti“.

buco neroAl contrario, per la meccanica quantistica l’informazione non può essere distrutta. Qui ogni stato quantico di un insieme di due o più sistemi fisici, virtuali o reali,  dipende dallo stato di quando ciascun sistema viene creato e si mantiene anche quando i singoli componenti dello stesso sistema sono spazialmente separati. Questo significa che se a una delle due particelle create insieme (un esempio classico sono un fascio di fotoni) viene imposto un particolare stato di polarizzazione esso si trasmette istantaneamente anche all’altra particella, senza alcuna limitazione spaziale 7. Quindi ogni modifica dello stato di una delle due particelle (o quella che cade oltre l’orizzonte degli eventi o quella che sfugge dal buco nero) si ripercuote anche sull’altra trasferendo informazione in un senso o nell’altro. Per comprendere meglio questo concetto è opportuno fare ricorso a un  gedankenexperiment, un esperimento ideale tanto caro alla fisica teorica. Supponiamo due particelle entangled con spin $\nwarrow \hspace{0.75in} \nwarrow$ in prossimità dell’orizzonte degli eventi e una delle due cade nel buco nero mentre l’altra sfugge. Per il principio di equivalenza alla particella che cade non succede niente di particolare: lo spin $\nwarrow$ finisce oltre l’orizzonte degli eventi senza problemi. Ora all’esterno c’è una particella con spin $\nwarrow$ uguale a quella caduta all’interno, imbrigliata con questa; qualsiasi cambiamento di stato che una delle due subisce, si riflette istantaneamente attraverso l’orizzonte degli eventi.

È evidente che questo è il nodo centrale di tutta la discussione: o si rinuncia alla trasmissione dello stato quantico delle particelle che oltrepassano l’orizzonte degli eventi oppure si rinuncia alla casualità della radiazione di Hawking. Un modo elegante per uscire da questa impasse consiste nel congelare l’informazione – e la rispettiva particella – proprio sull’orizzonte degli eventi, interrompendo così anche l’azione di entanglement che trasporta l’informazione di stato all’esterno. In questo modo, tutta l’informazione che precipita in un buco nero rimane congelata sul suo orizzonte degli eventi.

l’Effetto Unruh e il Principio Olografico

Per il Principio Olografico l'informazione può essere desunta dalle proprietà che proietta su una superficie, esattamente come le increspature nell'acqua si proiettano nei giochi di luce sul fondo di una piscina.,

Per il Principio Olografico l’informazione può essere desunta dalle proprietà che proietta su una superficie, esattamente come le increspature nell’acqua si proiettano nei giochi di luce sul fondo di una piscina.

Nel 1993, Lenny Susskind ed altri [cite]http://arxiv.org/abs/hep-th/9306069[/cite][cite]http://arxiv.org/abs/hep-th/9308100[/cite] provano a definire una situazione non locale che non comprenda una perdita delle informazioni 8[cite]http://prd.aps.org/abstract/PRD/v14/i4/p870_1[/cite][cite]http://arxiv.org/abs/0710.5373[/cite]. Qui l’orizzonte degli eventi appare come una matrice di celle delle dimensioni di Plank, dove le informazioni di stato di ciò che cade nel buco nero vengono assorbite, mentre per il solito osservatore lontano pare che siano perse. Quindi i fenomeni entanglement non scompaiono ma vengono congelati sull’orizzonte degli eventi e l’informazione in realtà non è andata persa. Questa nuova interpretazione che voleva un orizzonte degli eventi caldo, all’inizio non era poi tanto convincente fino a che nel campo delle teorie quantistiche non apparvero le teorie delle stringhe e la teoria M, che avevano lo scopo di riunificare la meccanica quantistica con la gravità. Qui il contributo del fisico argentino Juan Maldacena fu determinante per comprendere meglio cos’è questo nuovo aspetto dell’orizzonte degli eventi caldo [cite]http://arxiv.org/abs/hep-th/9711200[/cite]. Anche alla luce della corrispondenza fra Spazio Anti de Sitter e Teoria di campo conforme (AdS / CFT) i risultati sono analoghi ai precedenti. Qui l’orizzonte degli eventi viene visto come un ologramma, una superficie che contiene tutte le informazione del buco nero 9. Così la corrispondenza AdS / CFT risolve, almeno in una certa misura, il paradosso dell’informazione dei buchi neri, mostrando come un buco nero possa evolvere coerente alla meccanica quantistica, senza alcuna perdita di informazioni.

Le ultime proposte di Hawking

black-hole-wallpaper-hdNella sua ultima opera Hawking [cite]http://arxiv.org/abs/1401.5761[/cite] avanza delle critiche al concetto di firewall (come è stato ribattezzato l’effetto Unruh  presso l’orizzonte degli eventi) trovando almeno tre grandi obiezioni a questo costrutto. Ha suggerito che occorre un cambio di passo (quello sì reale) nel modo di concepire i buchi neri pensandoli come oggetti finiti nel tempo, anche se lontanissimo, piuttosto che eterni e immutabili come spesso fatto finora. In quest’ottica anche il costrutto matematico che conosciamo come orizzonte degli eventi e descritto da Schwarzschild cambia di significato: è solo un limite del campo gravitazionale destinato a cambiare nel tempo, quindi si può definire come metastabile. Per questo Hawking lo definisce apparente, perché così appare all’osservatore per un tempo $T$. In questa nuova interpretazione il principio di unitarietà rimane intatto. La metrica di Kerr che può essere usata per descrivere un collasso di un buco nero reale indica che lo spazio oltre l’orizzonte degli eventi è essenzialmente caotico, quindi non occorre ricorrere al teorema olografico (e al firewall) per preservare l’informazione: questa passa nella radiazione di Hawking, ma talmente confusa da essere irriconoscibile. In questo modo  la radiazione non appare più essere casuale come finora si era creduto, ma talmente caotica da sembrare tale.

Quindi interpretare il pensiero di Hawking che chiede un nuovo approccio sui buchi neri come un rifiuto a  questi è solo buttarla in caciara. I buchi esattamente neri non lo sono mai stati, e lo si sapeva dal 1974. Adesso sappiamo che l’orizzonte eventuale dura solo un tempo finito, e anche questa appare come la scoperta dell’acqua calda.


Note:

Altri tasselli al puzzle della massa barionica mancante.

Il quasar UM 287 illumina la più grande nube di gas mai vista nell'Universo.

Il quasar UM 287 illumina la più grande nube di gas mai vista nell’Universo.
Credit: Nature

Oltre che la genesi e l’evoluzione, l’attuale  Modello Cosmologico Standard riesce ad indicare con discreta precisione anche la composizione dell’Universo 1 [cite]http://www.einstein-online.info/spotlights/BBN[/cite].
Nel 1933 l’astrofisico svizzero Fritz Zwicky, dimostrò una importante discrepanza tra la materia visibile e la massa misurata dell’ammasso di galassie della  Chioma 2.
Quello fu solo il primo dei tanti indizi che indicavano un’importante discrepanza tra le stime teoriche basate su leggi matematiche consistenti e i dati osservati.
Purtroppo almeno la metà della materia barionica prevista teoricamente finora è apparsa sfuggire da ogni tecnica di rilevazione diretta 3 4.

Tempo fa illustrai in queste stesse pagine [cite]http://ilpoliedrico.com/2012/09/la-materia-oscura-forse-solo-una-bolla.html[/cite] che enormi bolle di gas caldo (attorno a 1 – 2 milioni di kelvin) circondano le galassie. La massa complessiva di queste bolle è paragonabile a quello attualmente stimato per le galassie al loro centro.
Adesso altri recenti studi [cite]http://pa.as.uky.edu/circumgalactic-medium-and-galaxy-missing-baryon-problem[/cite] hanno rivelato che gli aloni galattici contengono anche una forma di gas molto più freddo (10.000° kelvin).
Gas così freddi non sono direttamente visibili ai telescopi 5 ma  alcuni aloni di questi aloni è stato possibile individuarli grazie all’impronta lasciata sulla luce di lontani quasar che li attraversano.

Il 7 gennaio scorso all’American Astronomical Society è stato presentato uno studio svolto sulla luce proveniente da diversi quasar posti accanto ad altre galassie in primo piano ripresi dal Telescopio Spaziale Hubble. Gli spettri di alcuni di questi oggetti hanno mostrato la presenza di significative quantità di carbonio, silicio e magnesio insieme alla presenza rivelatrice di tracce di idrogeno neutro (H I). Secondo i ricercatori, questo indica la presenza di aloni di gas relativamente freddo che circondano le galassie osservate attraverso la luce dei quasar. Aloni di materiale circumgalattico  freddo che possono contenere importanti quantità (dalle 10 alle 100 volte superiori di quanto finora stimato) di materia ancora nascosta e non conteggiata nelle stime della massa barionica mancante. Il team che ha realizzato questo studio è guidato da  Jessica Werk, astrofisica, dell’Università della California.

Questa sezione grande 10 milioni di anni luce simulazione del primordiale mostra come la materia si fonde in galassie collegate da filamenti di gas rarefatto. Credit: Nature

Una simulazione  del gas primordiale grande 10 milioni di anni luce  mostra come la materia riesce a fondersi in galassie collegate da filamenti di gas rarefatto.
Credit: Nature

All’incirca stessa tecnica è stata usata per osservare la più grande nube di gas conosciuta nell’Universo [cite]2014.14550[/cite]. Questa nebulosa pare essere uno dei filamenti di materia a grande scala del cosmo. Potrebbe essere la prima immagine diretta della ragnatela cosmica che pervade tutto l’Universo.
Gli autori di quest’altra scoperta sono gli astronomi Sebastiano Cantalupo e Xavier Prochaska anche loro dell’Università della California, Santa Cruz, che hanno usato il Keck Observatory, posto sulla cima del vulcano Mauna Kea alle Hawaii. Le immagini mostrano una nube di gas grande 460.000 parsec (1,5 milioni di anni luce) di lunghezza.
Sempre per il Modello Cosmologico Standard, prima della formazione delle galassie, L’Universo conteneva gas primordiale frutto della bariogenesi che disaccoppiò la materia dall’energia e che vide questa prevalere sull’antimateria e materia oscura. La materia oscura, predominante sulla materia barionica ordinaria, si addensò poi in estesi aloni gravitazionali in cui la materia ordinaria sarebbe poi finita per creare le galassie.
Ma come mostrano anche le simulazioni, non tutta la materia, sia la barionica che quella oscura, è finita per creare le galassie. Anzi, molta di questa avrebbe finito per creare la ragnatela tridimensionale che pervade il cosmo che collega tutte le galassie.
In effetti i ricercatori hanno trovato prove dell’esistenza di questi filamenti chiamati WHIM (Warm-Hot Intergalactic Medium), ovvero mezzo intergalattico caldo [cite]http://ilpoliedrico.com/2013/05/il-mistero-dei-barioni-mancanti.html[/cite].

Tutte queste nuove forme di materia -barionica – finora inosservate possono essere la risposta al dilemma della massa barionica mancante? forse è presto per dirlo ma credo di sì. Questa sarebbe un’altra prova della bontà del Modello Cosmologico Standard.


 

Note:

Gemini Planet Imager: alla ricerca di nuovi pianeti

light scattered by a disk of dust orbiting the young star HR4796A

L’immagine della “prima luce” del Gemini Planet Imager (GPI) della luce scatterata da un disco di polvere che orbita attorno alla giovane stella HR4796A. Si fa l’ipotesi che l’anello piu’ piccolo ed interno sia formato di polvere di origine asteroidale e cometaria durante la formazione planetaria, quelli che vengono definiti planetesimi. Alcuni scienziati hanno anche ipotizzato che il bordo ben definito dell’anerllo sia dato dalla presenza di un pianeta (ancora non individuato). L’immagine di sinistra (1,9-2,1 micron) mostra la luce nel visibile tra cui entrambi gli anelli di polvere e la luce residua dalla stella centrale scatterata dalla turbolenza dell’atmosfera terrestre. L’immagine di destra mostra solo la luce polarizzata. La luce dal bordo posteriore del disco e’ fortemente polarizzata in quando viene scatterata verso di noi. Immagine in grandi dimensioni disponibile qui . Crediti: Processing by Marshall Perrin, Space Telescope Science Institute.

 

 

Dopo quasi un decennio di sviluppo, costruzione e di collaudi lo strumento piu’ sofisticato al mondo per il direct imaging (immagine diretta) e per lo studio di pianeti extrasolari attorno ad altre stelle viene puntato verso il cielo per raccogliere e studiare la luce di questi mondi lontani.

Lo strumento, denominato Gemini Planet Imager (GPI) e’ stato progettato, costruito e ottimizzato per l’imaging di pianeti deboli attorno a stelle molto brillanti e per analizzarne le loro atmosfere. Sara’ pure un ottimo strumento per studiare i dischi di formazione planetaria ricchi di polvere intorno a giovani stelle. E’ lo strumento piu’ avanzato del suo genere che viene montato su uno dei telescopi piu’ grandi al mondo, il Gemini South Telescope di 8 metri, in Cile.

“Le immagini della prima luce del telescopio sono almeno un fattore 10 migliori di quelle degli strumenti di generazione precedente. In un minuto osserviamo pianeti per i quali di solito ci si impiega un’ora per la loro rivelazione” ha affermato Bruce Macintosh del lawrence Kivermore National Laboratory che ha guidato il team dei costruttori dello strumento.

GPI rivela la radiazione infrarossa dai giovani pianeti di tipo gioviano che orbitano a grande distanza dalla stella madre (e quindi hanno orbite piuttosto ampie), quelli che possono essere confrontati con i pianeti giganti gassosi nel nostro Sistema Solare non molto tempo dopo la loro formazione. Ogni pianeta che GPI osserva puo’ venir studiato in grande dettaglio.

“La maggior parte dei pianeti che oggi conosciamo sono noti grazie ai metodi indiretti che ci permettono di dire se c’e’ o meno un pianeta, ci permettono di dire qualcosa sulla sua orbita e sulla massa, ma non molto di piu'” ha affermato Macintosh. “Con GPI fotografiamo direttamente i pianeti attorno alle loro stelle – e’ un po’ come essere in grado di sezionare il sistema e di scavare dentro alle caratteristiche dell’atmosfera del pianeta”.

GPI ha compiuto le sue prime osservazioni lo scorso novembre, durante un debutto senza problemi. Si tratta di uno straordinario e complesso strumento astronomico delle dimensioni di una piccola automobile. “Questa e’ stata una delle run di prima luce piu’ lisce che abbia mai visto” ha affermato Stephen Goodsell, che gestisce il progetto per l’osservatorio.

Per le prime osservazioni di GPI il team di ricercatori ha preso come target dei sistemi planetari ben noti, tra cui il sistema di Beta Pictoris. GPI ha ottenuto il primo spettro del giovane pianeta, Beta Pictoris b. Allo stesso e’ stato utilizzato il modo di polarizzazione dello strumento, che permette di rilevare la luce della stella scatterata da particelle sottile, per studiare l’anello debole di polvere che orbita attorno alla giovane stella HR4796A. Con la strumentazione precedente era stato possibile osservare solo i bordi di questo anelli di polvere, che potrebbero essere i detriti che rimangono dalla formazione planetaria, con con questo numero strumento si puo’ osservare l’intera circonferenza dell’anello.

Anche se GPI e’ stato progettato per l’osservazione di pianeti lontani, e’ possibile utilizzarlo per osservare oggetti nel nostro Sistema Solare, e quindi molto vicini.

Europa_Gemini Planet Imager

Confronto di Europa osservato con il Gemini Planet Imager nella banda K1 a destra e immagine composita ottenuta dalla Galileo SSI e Voyager 1 e 2 (USGS), sulla sinistra. Sebbene GPI non sia stato progettato per oggetti estesi come un satellite, le sue osservazioni potrebbero aiutare nel trovare delle alterazioni superficiali dei satelliti gioviani ghiacciati oppure fenomeni atmosferici (come la formazione di nubi) sulla luna di Saturno, Titano. L’immagine nel vicino infrarosso a colori di GPI e’ una combinazione di tre differenti lunghezze d’onda. Crediti: Processing by Marshall Perrin, Space Telescope Science Institute and Franck Marchis SETI Institute.

Le immagini test della luna Europa di Giove, per esempio, possono permettere di mappare i cambiamenti della composizione superficiale del satellite. Le immagini qui sotto sono state presentate per la prima volta durante il 22esimo Meeting dell’American Astronomical Society a Washington DC.

“Osservare un pianeta vicino ad una stella in appena un minuto e’ sicuramente da brivido e l’abbiamo visto dopo una sola settimana che lo strumento e’ stato posizionato sul telescopio” ha affermato Fredrik Rantakyro, scienziato che fa parte dello staff di Gemini e che lavora sullo strumento. “Immaginate cosa sara’ in grado di fare questo strumento una volta che avremo completato e ottimizzato le sue prestazioni”.

“I pianeti extrrasolari sono estremamente deboli e difficili da rilevare accanto ad una stella luminosa” ha notato il Professor James R. Graham, Chied Scientist Professor dell’Universit’ della California che ha lavorato con Macintosh sin dall’inizio del progetto. GPI puo’ vedere i pianeti che hanno una luminosita’  un milione di volte piu’ debole di quella della loro stella. Spesso si descrive questo fenomeno come l’osservare una lucciola volteggiare attorno ad un lampione a migliaia di chilometri di distanza dall’osservatore. Gli strumenti utilizzati per individuare gli esopianeti devono essere progettati e costruiti con estrema precisione. GPI rappresenta un risultato tecnico estremamente incredibile per il team internazionale di ricercatori che hanno ideato, progettato e costruito lo strumento. Notevoli sono anche le capacita’ del telescopio Gemini.

Dopo anni di sviluppo e di test di simulazione e’ sicuramente uno dei traguardi piu’ ambiziosi nello studio della ricerca di esopianeti. Quest’anno il team di GPI iniziera’ una survey a grande campo considerando ben 600 stelle giovani alla ricerca di quanti pianeti giganti orbitano attorno ad esse. GPI verra’ utilizzato anche per altri progetti all’interno della comunita’ Gemini, progetti che vanno dalla formazione di dischi planetari all’emissione di polvere da stelle massicce nelle loro fasi finali evolutive.

GPI scruta il cielo attraverso l’atmosfera terrrestre e quindi attraverso la turbolenza atmosferica del nostro pianeta, ma grazie all’ottica adattiva avanzata lo strumento sara’ in grado di vedere pianeti delle dimensioni di Giove. Una simile tecnologia sta per essere proposta anche per i futuri telescopi spaziali.

Fonte Gemini Telescope – World’s most powerful exoplanet camera turns its eye to the sky

Sabrina