Supernova

[video_lightbox_vimeo5 video_id=”189562895″ width=”90%” height=”100%”  anchor=”https://ilpoliedrico.com/wp-content/uploads/2016/12/novae.png”]

La struttura interna di una stella massiccia al momento del collasso. In effetti somiglia a una cipolla. Gli strati non sono in scala ma servono a rendere l’idea.

Credit: Wikipedia.

Essenzialmente le stelle sono il prodotto di equilibrio tra la spinta  del collasso gravitazionale di una nube di idrogeno e la pressione di radiazione fornita dalle fusioni nucleari di tale elemento che contrasta la spinta. Fino a circa 8 masse solari le stelle termineranno la loro vita con lenti e misurati sbuffi nello spazio arricchendo il cosmo di tutti quegli elementi così tanto preziosi alla vita: carbonio, azoto, ossigeno e tanto elio. Quelle più grandi invece saranno le protagoniste dei più possenti fuochi d’artificio cosmici che potreste immaginare. Immani esplosioni, chiamati supernova, sono capaci di rendere sterili i pianeti di sistemi stellari distanti decine di anni luce e ferendo gli altri per centinaia [cite]https://arxiv.org/abs/1605.04926[/cite] [cite]https://arxiv.org/abs/astro-ph/0309415[/cite]. Solo meno del 8% delle stelle della Via Lattea possiede una così grande massa e di queste solo una minuscola frazione possiede una massa sopra le 25 masse solari [cite]https://ilpoliedrico.com/popolazioni-stellari-della-via-lattea[/cite]. Come si formino stelle massicce anche 100-120 volte la massa del Sole è rimasto e rimane un rebus difficile da comprendere e spiegare. Idealmente la nube stellare che collassa dovrebbe venir soffiata via subito dopo che la stella si sia accesa al suo centro e invece questo non sempre accade. Una combinazione di opacità della nube alla radiazione della protostella, magnetismo, composizione – le stelle meno ricche di metalli tendono ad essere più massicce – e momento angolare possono suggerire come si formino questi giganti del cosmo.
I tipi di supernova si dividono essenzialmente in due grandi categorie perché i meccanismi di innesco sono due e profondamente diversi tra di loro. Il modo più semplice ed immediato per distinguerle è osservare se nello spettro dell’esplosione è presente dell’idrogeno o meno. Se questo non è presente, allora stiamo osservando una supernova di tipo I, altrimenti siamo di fronte a un episodio di tipo II 1.
Non è una distinzione da poco, questa differenza indica che le origini della supernova sono totalmente dissimili; anche se l’evento parossistico è simile. Nel primo caso la causa scatenante è dovuta all’accrezione di una stella degenere (nana bianca o stella di neutroni)  a scapito della sua compagna in un sistema stellare doppio o multiplo: quando la massa della prima raggiunge il limite di Chandrasekhar (1,4 M, nella realtà l’evento supernova si scatena un attimo prima a causa della rotazione della stella degenere) 2 avviene l’esplosione, Per questo le righe dell’idrogeno della serie di Balmer non appaiono. Nel secondo caso, il più frequente ma il meno narrato nel dettaglio, è dovuto al collasso gravitazionale di una stella massiccia almeno 8 volte il Sole.
Essendo pur sempre fenomeni spettacolari, le supernovae tra le 8 e le 25 masse solari danno origine a esplosioni relativamente più deboli, mentre superata la soglia delle 25 M l’esplosione è qualcosa di veramente impressionante [cite]http://dx.doi.org/10.1016/S0375-9474(97)00289-3[/cite] [cite]https://arxiv.org/abs/astro-ph/9701131[/cite] [1] [ [2]. Cercherò ora di raccontarla.

  • – 5 830 000 anni  – Sequenza principale – \(\left ( H \rightarrow He \right )\)

Si accende la stella. La sua composizione chimica è assai simile a quella del Sole; solo la massa è 25 volte più grande. Il nucleo è enorme, quasi 13 masse solari sono coinvolte nella fusione dell’idrogeno. Il processo di fusione principale è la catena CNO. Nelle stelle sopra le 15 masse solari il nucleo è interamente convettivo, questo spiega perché almeno metà della massa della stella è coinvolta attivamente nel processo di fusione nucleare.  La temperatura nel nucleo raggiunge i 58 milioni di kelvin per una densità di soli 5 grammi per centimetro cubico. Non molti, quasi quanto quello della Terra. Nella sua breve permanenza nella sequenza principale la stella cresce in luminosità e dimensioni. Quando la percentuale di idrogeno nel nucleo diventa infinitesimale (meno di 6 atomi di idrogeno su 100 mila atomi di elio) la fusione principale si sposta sempre più verso un guscio più esterno raggiungendo la sua massima estensione in appena diecimila anni. Il nucleo di elio è 7 volte più grande del Sole mentre la massa interessata delle reazioni nucleari dell’idrogeno è di ben 14,5 masse solari. Intanto il vento stellare soffia via circa  5  miliardesimi di massa solare all’anno, aumentando di dieci volte di intensità verso la fine del periodo.

  • – 677 000 anni  – Supergigante blu – \(\left ( He \rightarrow C O \right )\)

Negli ultimi diecimila anni di vita nella sequenza principale la pressione radiativa esercitata dalla sola fusione dell’idrogeno non basta più a contrastare il peso della stella e la forza gravitazionale la contrae verso il suo centro. La stella abbandona così la sequenza principale. Il suo nucleo di elio raggiunge  232 milioni di gradi per una densità di 700 gr/cm3 sovrastato da uno strato dove ancora si fonde idrogeno. Sotto la nuova spinta radiativa la stella si espande di nuovo e diventa una supergigante. Parte del suo strato più esterno viene disperso nello spazio e soffiato via, mentre il vento stellare si fa via via più poderoso. Inizia così il bruciamento dell’elio nel nucleo. Il prodotto finale è un nucleo di carbonio (12C) e ossigeno (16O) di poco più di 5 masse solari e l’inizio della degenerazione degli elettroni, il che per poco aiuta a sostenere il peso della stella. Ma non basta.

  • – 1000 anni – Supergigante – \(\left ( C \rightarrow Ne O \right )\)

Anche l’elio del nucleo è infine esaurito. Ne rimane un tenue strato in fusione sopra un nocciolo convettivo di carbonio e ossigeno. negli ultimi 200 anni di bruciamento dell’elio riprende la contrazione della stella finché la temperatura della fucina stellare arriva a 930 milioni di gradi  per 200 kg/cm3 di densità.  La natura convettiva dell’interno della stella fa sì che tutto sia continuamente mescolato; è così che parte degli atomi più pesanti prodotti nel nucleo raggiungono la superficie per essere poi persi nello spazio in un altro sbuffo di materia. Mentre l’intensità del vento stellare aumenta ancora, il processo di perdita importante di materia si ripeterà ogni volta che si riavvia il poderoso braccio di ferro tra gravità e pressione energetica rilasciata dalle reazioni termonucleari.

  • – 200 anni – Supergigante – \(\left ( Ne \rightarrow  O \right)\)

Negli ultimi 80 anni del ciclo precedente tutto sembra ripetersi sempre più furiosamente, contrazione, perdita di altra massa stellare e così via. La temperatura nel sempre più piccolo nucleo di neon e ossigeno grande una volta e mezza il Sole sale fino a 1.75 miliardi di gradi per 4 tonnellate per centimetro cubico. Intanto, gusci concentrici al nucleo continuano a bruciare carbonio e elio, ma sono ormai quasi esausti.

  • -9 mesi – Supergigante gialla – \(\left ( O \rightarrow S Si Ar \right )\)

Un nuovo parossismo scuote il centro della stella. Nei suoi ultimi mesi di vita la temperatura del nucleo arriva a 2.32 miliardi di gradi per 10 t/cm3 riuscendo a fondere l’ossigeno in un nocciolo di zolfo, silicio e argon mentre il vento stellare continua furiosamente ad espellere massa al feroce ritmo di 5 decimillesimi di masse solari all’anno, quasi 170 volte la massa di Giove.

  •  -1 giorno – Supergigante gialla – \(\left ( Si \rightarrow Fe \right )\)

Ormai le temperature e pressioni al centro della stella sono del tutto fuori controllo. 4 miliardi di gradi per 30 tonnellate per centimetro cubico fondono anche il nocciolo di silicio grande 1.1 volte il Sole.
Dal bruciamento del silicio hanno origine gli isotopi del silicio  (30Si – 0.187 M), dello zolfo (34S – 0.162 M) e del cromo  (52Cr – 0.113 M). Ma soprattutto tanto ferro (56Fe – 0.547 M) e cromo (52Cr – 0.251 M).  A 100 milioni di tonnellate/cm3 anche i neutroni degenerano. Il nocciolo ha ormai raggiunto quasi 7 miliardi di gradi e 3000 tonnellate per centimetro cubico di densità. è in realtà un nucleo di materia ormai degenere.
Negli ultimi 40 minuti solo un tenue guscio di silicio e la resistenza alla compressione degli elettroni degeneri trattiene la stella dall’inevitabile catastrofe.

  • – 0,25 secondi – Il collasso finale

Finalmente la gravità pare vincere sulle reazioni termonucleari che hanno sostenuto la stella per quasi 6 milioni di anni. La stella collassa su sé stessa alla tremenda velocità di 50 mila chilometri al secondo, un sesto della velocità della luce. Sotto questa immane pressione, 100 milioni di tonnellate per centimetro cubico e  quasi 35 miliardi di gradi, i nuclei dell’elemento ferro interagiscono con gli elettroni degeneri: i protoni si fondono con gli elettroni convertendosi in neutroni generando anche una cascata di neutrini. Il nucleo ormai è in immenso neutrone di appena 40 chilometri di diametro. Ne consegue che la materia che cade sul nucleo di neutroni anelastico rimbalza via praticamente alla stessa velocità del collasso scontrandosi con la parte della materia ancora in caduta libera. Lo shock provoca processi di disintegrazione e rifusione per cattura neutronica di elementi più pesanti del ferro che assorbono energia. L’energia così dissipata è paragonabile a quella emessa dalla stella nei suoi quasi 6 milioni di anni di vita. Dietro lo shock i protoni tornano a legarsi con gli elettroni producendo un flusso di neutrini energetici, i quali rappresentano una grande percentuale dell’energia rilasciata nel crollo della stella.
Intanto il nucleo in collasso diventa opaco ai neutrini che possono diffondersi così solo per scattering, analogamente ai fotoni emessi dalla stella fino a pochi attimi prima. Come per una stella esiste la fotosfera, cioè dove la stella diventa trasparente alla radiazione elettromagnetica, così si può parlare di neutrinosfera dove la densità del nucleo di neutroni diventa abbastanza bassa da consentire la fuga dei neutrini. L’onda d’urto che si infrange sul nucleo è causa di una convezione instabile che converte l’energia termica intrappolata nel nucleo in energia cinetica trasportata dai neutrini intrappolati. Questo processo raffredda il nucleo di neutroni fino a poche decine di milioni di gradi in pochi secondi mentre parte dell’energia cinetica dei neutrini (circa lo 0,3% sembra niente ma è pur sempre una quantità spaventosa di energia) viene assorbita e dispersa dagli strati coinvolti nello shock di rimbalzo contribuendo anch’essa all’esplosione finale.

  •  I resti

Relazione di massa iniziale e finale per le stelle di composizione solare. La linea blu indica la massa stellare dopo il bruciamento del nucleo di elio. Per M ~ > 30 M⊙ il nucleo di elio è esposto come una stella WR, la linea tratteggiata offre due diversi scenari dipendenti dall’incertezza dei tassi di perdita di massa WR. La linea rossa indica la massa del residuo stellare compatto, risultante dalla perdita di massa AGB per le stelle di massa intermedia, e l’espulsione dell’ involucro nel casa del collasso del nucleo per le supernova delle stelle più massicce. Le aree verdi indicano la quantità di massa espulsa che è stata processata dalla combustione dell’elio e dalla combustione nucleare più avanzata. (Figura da Woosley et al. 2002).

Quel che resta del nucleo dipende dalla sua massa finale dopo lo shock [3]. E questo è funzione della metalliticità iniziale della stella e della massa finale del nucleo. Il caso delle 25 M per una stella di composizione simile al Sole è un caso limite fra un residuo di neutroni e un buco nero anche se qui il primo caso è da preferirsi.
Se l’inviluppo di idrogeno è ancora importante la sua ricombinazione dallo stato ionizzato fornisce altra energia che diventa sempre più visibile man mano che nel processo di espansione diventa più sottile e freddo. Comunque la ricombinazione ovviamente interessa anche gli elementi più pesanti quando vengono raggiunte temperature e densità adeguate dalla materia espulsa dalla supernova. È questo fronte di ricombinazione che produce il plateau nella curva di luce che verrà osservata nei mesi successivi all’esplosione.
Nella fase finale la curva di luce della supernova è dominata dai processi di decadimento radioattivo degli isotopi prodotti dall’esplosione, soprattutto il nichel (56Ni  + e56Co + ν + γ   τ½ = 6.1 giorni) e il cobalto (56Co + e56Fe + ν + γ   τ½ = 77 giorni) verso il ferro. Anche il decadimento di altri isotopi meno diffusi e con tempi di decadimento diversi contribuisce a suo modo alla curva di luce.

Per alcuni mesi, il bagliore incandescente dei resti della supernova è quanto quello di un centinaio di miliardi di stelle come il Sole, più o meno quanto quello della galassia ospite. Poi, pian piano, il bagliore scema, ma può comunque essere ancora un centinaio di milioni più intenso della nostra stella. Dopo l’esplosione il nucleo di neutroni è quel che rimane della grande stella. La sua massa supera di poco quella del Sole compressa in uno spazio di una ventina di chilometri di diametro che ruota su sé stesso almeno dieci volte al secondo: una stella di neutroni. Anche il momento magnetico dell’antica stella è compresso nel piccolo nocciolo dando origine a un campo magnetico 100 miliardi di volte più intenso di quello terrestre. Nella pratica il resto si comporta come un’enorme dinamo celeste che cattura gli elettroni rimasti ancora liberi e li accelera fino quasi alla velocità della luce. Questo produce luce. Luce che illumina i resti della supernova in espansione come le comuni stelle illuminano le nebulose planetarie. Lo spettacolo non dura molto perché sottrae energia cinetica alla stella di neutroni che rallenta; ci vogliono circa 25 mila anni ma anche questo infine ha termine.

Mentre ho volutamente tralasciato da questa cronaca alcune cose che ritengo essere di secondo interesse per il lettore, altre magari mi sono senz’altro sfuggite per mia disattenzione.
Le cifre che ho riportato sono frutto di calcoli basati sui modelli attuali e pertanto sono da considerarsi solamente indicative della scala dei reali valori in gioco per una stella di 25 M.
Non ho altro da aggiungere se non … cieli sereni!

La leggenda di Tama Rereti

Nelle mie continue ricerche mi sono imbattuto sulla leggenda Maori che descrive la nascita della Via Lattea. L’ho trovata carina, e penso che sia una delle più belle leggende sulla creazione della nostra galassia abbia mai letto.
La cosa che più mi ha colpito è quando il Dio del Cielo chiede il permesso e consiglio a un semplice uomo mortale, cosa che nel pantheon greco-romano nessuno avrebbe mai pensato di fare. Ma non voglio rovinarvi la lettura.

 

Te Waka o Tama Rereti Credit: John Drummond

Te Waka o Tama Rereti Credit: John Drummond

Molto tempo fa, subito dopo le prime persone apparvero sulla Terra, non c’erano ancora le stelle nel cielo notturno. Era così buio che era impossibile vedere e muoversi di notte senza inciampare. Solo il Taniwha (lo spirito delle acque e custode della natura) era l’unica creatura che era in grado di muoversi nel buio. Qualsiasi cosa che si fosse mossa nell’oscurità rischiava di essere divorata dal Taniwha che durante il giorno riposava sul fondo dei laghi e dei fiumi.

[fancybox url=”https://www.google.it/maps/place/Lago+Taupo/@-38.8065141,175.6283523,10z/data=!3m1!4b1!4m5!3m4!1s0x6d6b93694c18b70b:0x2a00ef6165e1d880!8m2!3d-38.791557!4d175.9150389″][/fancybox]

In quell’epoca viveva anche un grande e astuto guerriero di nome Tama Rereti. La sua casa era sulla sponda sud del grande lago Taupo.
Una mattina di primavera, Tama Rereti si svegliò nella sua capanna 1 e si scoprì molto molto affamato ma in casa non aveva più niente mangiare. Così, osservando le acque increspate del lago, decise di andare a pesca, per poter catturare qualche pesce per se stesso e la sua famiglia.
E così Tama Rereti raccolse le sue reti ele esche e le mise nella sua canoa 2, dopodiché issò la vela e uscì fuori sul lago. Quando giunse nel suo luogo di pesca preferito abbassò la vela e cominciò a pescare. Quando Tama Rereti ebbe preso qualche bel pesce decise di tornare al villaggio per mangiare.

Però purtroppo il vento era calato e fu bonaccia. Ma la giornata era mite e durante il lungo viaggio di ritorno Tama Rereti si concesse un sonnellino sdraiandosi sul fondo della canoa. Cullato dal dolce dondolio della barca e il suono delle onde si addormentò. Mentre Tama Rereti dormiva si alzò una dolce brezza che sospinse la canoa fino alla riva nord del grande lago.
mata-ora2009-urseanuQuando si svegliò vide con sua grande sorpresa che era dalla parte opposta del lago. Non c’era modo che potesse tornare a casa prima del tramonto. E sapeva che dopo il tramonto il Taniwha guardiano del lago, mangiava tutto ciò che si muoveva nel buio e che questa sorte sarebbe presto capitata anche a lui. Ma Tama Rereti era un valoroso guerriero. Non aveva paura di combattere con il Taniwha ma amava la sua famiglia ancora di più. Tutto quello che voleva era di tornare a casa da sua moglie e i figli, al sacro fuoco della sua famiglia 3.

Tama Rereti era anche saggio, sapeva che non vanno mai prese le decisioni importanti a stomaco vuoto, e lui aveva ora molta fame. Così si diresse con la sua canoa verso una spiaggetta di ghiaia lì vicino dove gettare l’ancora e mangiare il suo pesce.  Così accese  un piccolo falò e cosse il suo pesce; poi, seduto su un tronco caduto, se lo mangiò. Tama Rereti poi rimase lì seduto, ascoltando il canto del Tui 4, il  frangersi delle lievi onde del lago sui ciottoli della riva e lo stormir delle foglie degli alberi all’alitar della brezza. Era tutto così tranquillo e caldo davanti al piccolo falò quando  Tama Rereti vide che i ciottoli usati per costruire il falò erano diventati luminosi, ed ebbe un’idea per tornare a casa.
Allora caricò più sassi brillanti possibile sulla canoa e la spinse fuori nel lago e poi pensò: “Che succede se invece di attraversare il lago, navigo sul Grande Fiume del Cielo?”
E così Tama Rereti diresse la sua canoa verso quel punto in cui il sole scivola sotto l’orizzonte per far spazio alla notte e scoprì che la corrente del fiume era potente ma costante.

Come fu entrato nel Fiume del Cielo, Tama Rereti cominciò a spargere in tutte le direzioni tutti i suoi ciottoli luminosi mentre avanzava. La scia della canoa divenne la Via Lattea e i ciottoli le sue stelle. Per questo oggi abbiamo le stelle nel cielo.
Alle prime luci dell’alba Tama Rereti aveva  finito tutti i sassolini quando poté vedere il suo villaggio: egli aveva navigato nelle direzione giusta cavalcando il Grande Fiume del Cielo.
Era così stanco che dopo aver fissato la sua canoa a un grande ceppo, Tama Rereti si trascinò alla sua capanna e, proprio mentre il sole appariva sulle colline d’oriente,  si sdraiò sul giaciglio e si addormentò profondamente.

Quando il guerriero finalmente si svegliò nel mezzo del pomeriggio, Ranginui, il Dio del Cielo, era seduto fuori la capanna ad aspettarlo.
Tama Rereti pensò che Ranginui fosse arrabbiato con lui che aveva osato sporcargli il cielo con tutti quei ciottoli brillanti. E invece il dio del cielo era contento del risultato. Per la prima volta c’era abbastanza luce di notte da permettere alle persone di vedere cosa facevano e di muoversi in tutta sicurezza. Ranginui era felice della bellezza del nuovo cielo notturno.
E così perché la gente si ricordi come furono messe le stelle nel cielo e quanto questo sia così bello di notte, Ranginui chiese a Tama Rereti il permesso di ancorare per sempre tra le stelle la sua canoa e insieme scelsero il posto nel cielo. Là dove la scia è più brillante c’è la grande canoa di Tama Rereti che galleggia da quel giorno.

L’espansione dell’Universo sta accelerando oppure serve un nuovo modello?

Questa è davvero la celebre domanda da un milione di dollari o, se preferite visto che siamo in Europa, un milione di euro. Non è davvero facile rispondere, solo le prossime ricerche ci potranno dire da quale parte guardare. Ma il progresso scientifico va avanti così, per tentativi ed errori. Fra Premi Nobel dati per scoperte che domani potrebbero essere superate per il medesimo meccanismo di autorevisione che li aveva distribuiti.
Questo giusto per ricordarci quanto sia incerto il pensiero umano che si dedica alle scoperte del Cosmo dove l’unica certezza è sapere di non essere certi  di sapere abbastanza.

 Nel 2011 Brian P. Schmidt e Adam Riess vinsero il Premio Nobel per la Fisica per aver scoperto che l’Universo stava accelerando la sua espansione al contrario di quanto fino ad allora era stato creduto. Il perché questo accada non è mai stato chiarito del tutto ma finora tutto suggerisce che sia la conseguenza di una costante cosmologica, indicata con la lettera greca \(\Lambda\), capace di contrastare il collasso gravitazionale del contenuto dell’Universo. Già in passato mi sono cimentato nello spiegare per sommi capi come questa costante operi nel Modello Standard \(\Lambda CDM\) (Lambda Cold Dark Matter) [cite]https://ilpoliedrico.com/2016/07/zenone-olbers-lenergia-oscura-terza-parte.html[/cite] e quindi non credo sia opportuno tornarci sopra, ma di fatto tutto indica che una condizione di universo accelerato sia legata anche allo stato di falso vuoto che permette l’esistenza stessa della materia e di conseguenza la nostra di osservatori.
Per comprendere meglio come si è arrivati a capire che l’espansione dell’Universo sta accelerando, prendiamo ad esempio una SNa che con le dovute correzioni del caso, mostri uno spostamento verso il rosso (redshift) \(z\) di circa 0.1, pari a circa il 10% dell’età dellUniverso (\(\approx\)1.38 miliardi di anni). Per una distanza così – relativamente – piccola la luminosità apparente osservata nelle SNe è in linea con il loro redshift e quanto prevede la normale Legge di Hubble. Per le distanze maggiori, supponiamo \(z \approx\)0.5 (\(\frac{2}{3}\) dell’età  dell’Universo) si osserva che la luminosità delle SNe 1a è più bassa del redshift indicato dal loro spettro. Questo indica che nel corso del tempo l’espansione dell’Universo è cambiata  e che pertanto l’affievolimento della luce delle SNe risulta più marcato e che devia dalla linearità della Legge di Hubble in funzione del tempo trascorso.  In soldoni, l’Universo si stava espandendo più lentamente in passato di quanto lo faccia oggi. La luce emessa quando l’Universo aveva \(\frac{2}{3}\) dell’età attuale ha dovuto percorrere più spazio per raggiungerci e quindi è più debole di quanto previsto dai modelli di universo senza alcuna costante cosmologica.

L’altro giorno però, uno studio apparso su Scentific Reports di Nature [cite]http://www.nature.com/articles/srep35596[/cite] sembrava rimettere in discussione che l’espansione dell’Universo stesse accelerando. In realtà non è proprio così, il senso dell’articolo a mio avviso non è stato compreso del tutto e di conseguenza anche la notizia è stata distorta.
In pratica gli autori della ricerca, tra cui figura anche l’italiano Alberto Guffanti dellUniversità di Torino, hanno suggerito che in base a un nuovo campione di 740 supernovae (SN) del tipo 1a  1 non possono esserci prove evidenti che l’espansione dell’Universo sta accelerando e che le nuove loro analisi sono consistenti piuttosto con un modello di espansione costante.

Gli altri studi che confermano l’attuale modello  \(\Lambda CBM\)

ilc_9yr_moll4096

Anisotropie di temperatura nella CMBR (± 200 microKelvin) rilevate dal satellite WMAP. Queste microvariazioni nella densità della materia sarebbero all’origine degli ammassi di galassie. La loro dimensione paragonata alle dimensioni degli ammassi di galassie successivi mostra che l’espansione dell’Universo sta accelerando.

Così, giusto per chiarire, che l’espansione dell’Universo stia accelerando non sono solo le misure fotometriche delle diverse supernovae a dirlo. Dall’anno della scoperta del fenomeno, il 1998, gli astronomi hanno cercato, e trovato, altre prove indipendenti a sostegno di questa tesi [cite]https://arxiv.org/abs/astro-ph/0604051v2[/cite], mentre nuove misure e ricalibrazioni delle candele standard suggeriscono che l’accelerazione potrebbe essere ancora più accentuata [cite]https://arxiv.org/abs/1604.01424[/cite].
Spiegare nel  dettaglio ognuno di questi porterebbe troppo lontano. Una di queste fa riferimento alle dimensioni dell’impronta delle oscillazioni acustiche dei barioni rilevate nella radiazione cosmica di fondo (CMBR) 2 e alla distribuzione delle dimensioni degli ammassi di galassie nel corso del tempo [cite]http://iopscience.iop.org/article/10.1086/466512/[/cite].
Altre conferme dell’attuale modello \(\Lambda CBM\) provengono dalla distribuzione di massa degli ammassi di galassie e perfino dal calcolo dell’età del1l’Universo [cite]https://arxiv.org/abs/1204.5493[/cite] [cite]http://www.cambridge.org/it/academic/subjects/astronomy/cosmology-and-relativity/formation-structure-universe[/cite].

Il  nuovo studio

L'effettto Sachs-Wolfe integrato.Credit: Istituto di astronomia dell'Università delle Hawaii

L’effettto Sachs-Wolfe integrato. Questo meccanismo potrebbe essere invocato per spiegare l’arrossamento locale della luce per effetto della gravità.
Credit: Istituto di astronomia dell’Università delle Hawaii

In realtà i ricercatori affermano appunto che stando alle loro ricerche basate su un numero molto maggiore di SNe le analisi – interpretate col modello attuale, quindi quello di un universo descritto per comodità di calcolo come esattamente omogeneo e che si comporta come un gas ideale, tenetelo a mente – dei dati indicano che esse non potrebbero fornire una prova certa dell’attuale modello. Gli amanti della statistica potrebbero trovare interessante che la distribuzione delle probabilità descritte da questo studio che questo Universo si trovi in uno stato di espansione accelerata è \(\lesssim\) 3 \(\sigma\) (circa lo stesso o di poco minore ai 3 sigma).
Se questa ricerca fosse confermata, in proposito lo strumento CODEX presso l’European Extremely Large Telescope (E-ELT) dovrebbe poter presto indicare dove e cosa cercare, si aprirebbero nuove possibilità: come spiegare che le fluttuazioni acustiche dei barioni nella CMBR che riflettono quello che osserviamo oggi nell’Universo? E la distribuzione della massa degli ammassi di galassie? Un modello interessante per spiegare alternativamente quello che osserviamo nella luce delle SNe è l’effetto Sachs-Wolfe integrato [cite]https://ilpoliedrico.com/2012/09/energia-oscura-e-anisotropia-nella-radiazione-cosmica-di-fondo.html[/cite], un arrossamento della luce causato dalla curvatura locale dello spazio dovuta alla gravità.
Questa chiave di lettura porterebbe inevitabilmente al ripensamento dei modelli di universo non più intesi come oggetti esattamente omogenei  e isotropi ma più come spazio vuoto con un ruolo più marcato della componente massa/energia a livello locale. Gli autori della ricerca in fondo questo dicono: il modello a CDM corretto per tenere conto della componente repulsiva attribuita all’energia oscura e indicata come costante cosmologica \(\Lambda\) è vecchio e sorpassato dalle nuove scoperte e conoscenze. È ora che esso venga ripensato.

Zenone, Olbers e l’energia oscura (terza parte)

Nei precedenti articoli ho cercato di spiegare che il nostro Universo è in realtà freddo e buio fatto perlopiù di vuoto in perenne espansione. È impossibile che il peso di tutto il suo contenuto possa infine provocarne il collasso, non c’è abbastanza materia e energia (anche l’energia ha la sua importanza: ricordate il rapporto di equivalenza tra massa ed energia \(E=mc^2\)?) per farlo chiudere su sé stesso. Ma se l’idea di un Big Crunch finale, ossia una fine dell’Universo governata da pressioni e temperature inimmaginabili tanto da far impallidire l’Inferno dantesco certamente non è piacevole, l’idea che tutta la già poca materia esistente finisca disgregata in una manciata di fotoni solitari nel nulla del vuoto che corre ancora più veloce della luce è spaventoso; inimmaginabile. Ma tranquillizzatevi, questo accadrà forse fra migliaia di eoni ma intanto il fenomeno che condanna a morte l’Universo potrebbe essere lo stesso che permette oggi la nostra esistenza.

La Hubble Ultra Deep Field (HUDF) è stata ripresa tra il 24 settembre 2003 e il 16 gennaio successivo mostra che stelle e galassie già dominavano l'Universo 13 miliardi di ani fa. Questo campo è circa un decimo della luna piena ma contiene qualcosa come dieci mila galassie! Credit: NASA

La Hubble Ultra Deep Field (HUDF) è stata ripresa tra il 24 settembre 2003 e il 16 gennaio successivo mostra che stelle e galassie già dominavano l’Universo 13 miliardi di ani fa. Questo campo è circa un decimo della luna piena ma contiene qualcosa come dieci mila galassie! Credit: NASA

Cercare di immaginare  la vastità dell’Universo è quasi impossibile e descriverlo senza ricorrere agli artifici matematici lo è ancora di più.
La naturale percezione umana è troppo limitata per descriverlo; essa già fallisce quando cerca di dimostrare la piattezza della Terra che è una sfera 7 milioni di volte più grande di un uomo.
Quindi quando sentiamo parlare di “universo in espansione” è spontaneo chiedersi anche “Entro cosa?“. In realtà non c’è un dentro e un fuori, così come non può esserci un punto di partenza e uno di arrivo in una circonferenza. Idealmente il tessuto dell’Universo, lo spazio-tempo, lo si può far coincidere con l’espansione dello stato di falso vuoto provocato dal decadimento del campo inflatone che chiamiamo Big Bang. Una metafora che uso spesso è quella del panettone che lievita: i canditi sono in quiete fra loro, proprio come lo sono le galassie; è il panettone che gonfiandosi fa crescere la loro distanza relativa.  L’Universo fa altrettanto e come non può esserci panettone fuori dal panettone, non può esserci spazio fuori dallo spazio.

Nel 1917 ancora si dava per scontato che l’Universo nel suo insieme fosse statico e immutabile ma le equazioni di campo derivate dalla Relatività Generale asserivano il contrario. Einstein stesso cercò di conciliare le sue equazioni di campo ad un modello statico di universo introducendo una costante, indicata con la lettera greca \(\Lambda\), capace di contrastare il collasso gravitazionale del contenuto dell’universo assegnandole quindi una natura repulsiva. L’aspetto matematico di questa costante è quello di una densità energetica del vuoto  (\(\rho_\Lambda=\frac{\Lambda c^4}{8\pi G}\)) espresse in unità di energia per unità di volume (\(J/m^3\)). Essendo essa il prodotto di altre costanti fisiche, \(\pi\), \(c\) e \(G\),  una volta indicato il suo valore numerico, esso non varia col tempo, con la dimensione di scala o altre condizioni fisiche: è costante comunque.
In seguito la scoperta dell’espansione dell’universo fece decadere l’ipotesi di una costante repulsiva capace di contrastare il collasso dell’Universo, ma nel 1998 due studi indipendenti, Supernova Cosmology Project [cite]https://arxiv.org/abs/0907.3526[/cite] e il High-Z Supernova Search Team [cite]http://arxiv.org/abs/astro-ph/9805200[/cite], dimostrarono che in realtà l’espansione dell’Universo stava accelerando.
La scoperta ovviamente giungeva inaspettata. L’Universo appariva sì in espansione, frutto del residuo della spinta iniziale dell’era inflazionaria; era anche chiaro come i modelli  cosmologici indicassero – come si è visto – che non c’è abbastanza materia ed energia perché il processo di spinta espansiva potesse infine arrestarsi e invertirsi verso un futuro Big Crunch, ma al più ci si poteva aspettare un minimo cenno di rallentamento nel ritmo verso una espansione illimitata, invece una accelerazione era proprio inattesa. E così che il concetto di una una proprietà repulsiva del vuoto, la famosa costante \(Lambda\) introdotta da Einstein ma poi quasi dimenticata perché  ritenuta inutile, tornò alla ribalta.

Ipotesi cosmologica dell’Energia Oscura, il modello della Costante Cosmologica \(\Lambda\)

Dovessimo descrivere il tessuto dello spaziotempo come un fluido, che non è materia o energia ma come più volte detto esiste energeticamente come uno stato di falso vuoto,  allora la densità energetica descritta da \(\rho_\Lambda\) attribuibile ad esso appare invariante rispetto a qualsiasi stato di materia e di energia che occupa lo spazio. In questo modello \(\rho_\Lambda\) è costante, così come lo era nei microsecondi successivi al Big Bang e lo sarà anche in un incalcolabile futuro.

Uno stato di falso vuoto in un campo scalare \(\varphi\). Si noti che l'energia E è più grande di quella dello stato fondamentale o vero vuoto. Una barriera energetica impedisce il campo di decadere verso lo stato di vero vuoto.L'effetto più immediato di questa barriera è la continua creazione di particelle virtuali tramite fenomeni di tunneling quantistico .

Uno stato di falso vuoto (il pallino) in un campo scalare \(\varphi\). Si noti che l’energia \(E\) è più grande di quella dello stato fondamentale o vero vuoto. Una barriera energetica impedisce il campo di decadere verso lo stato di vero vuoto. L’effetto più immediato di questa barriera è la continua creazione di particelle virtuali tramite fenomeni di tunneling quantistico .

È il Principio di Indeterminazione di Heisenberg che permette all’energia del falso vuoto di manifestarsi tramite la perpetua produzione spontanea di particelle virtuali:. $$\tag{1}\Delta x \cdot \Delta p \ge \frac{\hslash}{2}$$
Dove \(\Delta x\) indica il grado di indeterminazione della posizione e \(\Delta p\) quello dell’energia posseduta da una particella \(p\) rispetto alla Costante di Planck ridotta \(\hslash\). La stessa relazione lega l’energia \(E\) e il tempo \(t\): $$\tag{2}\Delta E \cdot \Delta t \ge \frac{\hslash}{2}$$
Questo significa che per un periodo di tempo brevissimo (questo è strettamente legato all’energia della particella) è possibile violare la ferrea regola della conservazione dell’energia, permettendo così  la formazione di coppie di particelle e antiparticelle virtuali che esistono solo per questo brevissimo lasso di tempo prima di annichilirsi a vicenda 1.
Non solo: i gluoni responsabili dell’Interazione Forte che legano insieme i quark sono particelle virtuali, i bosoni delle interazioni deboli sono virtuali e anche i fotoni che si scambiano gli elettroni all’interno degli atomi sono solo virtuali.
Comprendere come questa energia faccia espandere l’Universo è un attimino più complicato.
Immaginatevi di strizzare un palloncino. L’aria, o il gas, al suo interno si concentrerà così in un volume minore e premerà di conseguenza sulle pareti di gomma con una forza maggiore. L’intensità della pressione è ovviamente data dal numero delle particelle per unità di volume per l’energia cinetica delle particelle stesse ed è chiamata appunto densità energetica. Quando rilasciamo il palloncino, il volume di questo aumenta e le particelle d’aria che facevano pressione su un volume minore si ridistribuiscono allentando così la pressione; si ha così un calo della densità energetica.
Ma se la densità energetica dovesse essere una costante come lo è la densità energetica relativa al falso vuoto, ecco che a maggior volume corrisponderebbe una maggiore pressione sulle pareti del palloncino ideale e, più questo si espande, sempre maggiore sarebbe la spinta espansiva.
Questo è ciò che accade all’Universo: dopo un momento inflattivo iniziale provocato dal collasso del campo inflatone verso uno stato di falso vuoto che ha reso omogeneo (\(\Omega =1\)) l’Universo, la densità energetica residua ha continuato il processo di espansione dell’Universo sino alle dimensioni attuali. All’inizio della sua storia, finché l’Universo era più piccolo e giovane, la densità della materia \(\rho\) è stata abbastanza vicina al valore di densità critica \(\rho_c\), permettendo così che l’azione gravitazionale della materia contrastasse in parte la spinta espansiva; ma abbiamo visto che comunque a maggiore volume corrisponde una maggiore spinta espansiva, e è per questo che la materia ha perso la partita a braccio di ferro con l’energia di falso vuoto fino a ridurre la densità media dell’Universo ai valori attuali. In cambio però tutti i complessi meccanismi che regolano ogni forma di materia e di energia non potrebbero esistere in assenza dell’energia del falso vuoto dell’Universo.
Se il destino ultimo dell’Universo è davvero quello del Big Rip, però è anche quello che oggi permette la nostra esistenza, e di questo dovremmo esserne grati.

Qui ho provato a descrivere l’ipotesi più semplice che cerca di spiegare l’Energia Oscura. Ci sono altre teorie che vanno da una revisione della Gravità su scala cosmologica fino all’introduzione di altre forze assolutamente repulsive come nel caso della Quintessenza (un tipo di energia del vuoto che cambia nel tempo al contrario della \(\Lambda\)). Si sono ipotizzate anche bolle repulsive locali piuttosto che un’unica espansione accelerata universale; un po’ di tutto e forse anche di più, solo il tempo speso nella ricerca può dire quale di questi modelli sia vero.
Però spesso nella vita reale e nella scienza in particolare, vale il Principio del Rasoio di Occam, giusto per tornare dalle parti di dove eravamo partiti in questo lungo cammino. Spesso la spiegazione più semplice è anche la più corretta e in questo caso l’ipotesi della Costante Cosmologica è in assoluto quella che lo è di più.
Cieli Sereni

L’ampiezza di una zona Goldilocks

Questo articolo nasce in seno alla preparazione del materiale di studio per lo stage per i finalisti delle Olimpiadi di Astronomia 2016 presso l’INAF-Osservatorio Astrofisico di Asiago due lezioni, tra le tante, dedicate interamente ai pianeti extrasolari. Sabrina Masiero e il sottoscritto hanno studiato e rivisto i calcoli, più volte, perciò fidatevi!

goldilocksOgni volta che sentiamo parlare della scoperta di qualche nuovo pianeta in orbita attorno a qualche stella, viene spontaneo chiederci se esso può ospitare una qualche forma di vita. La vita come la conosciamo ha bisogno di acqua allo stato liquido per poter esistere, e poter stabilire i limiti dove questo è possibile è di notevole importanza. Questa zona è chiamata Goldilocks o Riccioli d’Oro 1 perché ricorda la bambina della favola, Goldilocks appunto, quando deve scegliere tra le tre ciotole di zuppa, quella che non sia né troppo calda né troppo fredda, giusta.
Calcolare le dimensioni e ‘estensione della fascia di abitabilità di una stella ci permette di capire quanto debba essere grande l’orbita di un pianeta per essere potenzialmente in grado di sostenere la vita.
Per comodità di calcolo verranno qui usati i parametri del nostro Sistema Solare ma conoscendo il flusso energetico (ossia la temperatura superficiale) di una qualsiasi stella e il suo raggio, allora sarà possibile usare questi nei calcoli che qui presentiamo purché si usino le stesse unità di misura.

  • Temperatura superficiale del Sole \(T_\odot\) \(5778 \) Kelvin
  • Raggio del Sole in unità astronomiche \(R_\odot\) \(\frac{6,96\times 10^{05} km}{1,496\times 10^{08} km} = 4,652 \times 10^{-03} AU\)
  • Distanza dal Sole in unità astronomiche \(a\)
  • Albedo del pianeta \(A\) (nel caso della Terra è 0,36)
Credit: Il Poliedrico

Credit: Il Poliedrico

Come spiegato anche nell’illustrazione qui accanto il flusso luminoso, e quindi ovviamente anche la temperatura, obbedisce alla semplice legge geometrica dell’inverso del quadrato della distanza.
La luminosità di una stella non è altro che la quantità di energia emessa per unità di tempo e considerando una stella come un corpo nero perfetto, si trova che \(L_\odot= 4 \pi {R_\odot}^2\sigma {T_\odot}^4\), dove \(\sigma\) è la costante di Stefan-Boltzmann.
Pertanto un pianeta di raggio \(R_p\) in orbita alla distanza \(a\) dalla sua stella di raggio \(R_\odot\) riceve una certa quantità di energia che riemette nello spazio come un corpo nero e raggiungendo perciò un equilibrio termico con il flusso di energia ricevuto. $$\frac{\pi {R_p}^2}{4\pi a^2}=\left ( \frac{R_p}{2a} \right )^2\tag{1}$$
Il pianeta offre solo metà di tutta la sua superficie alla stella (\( 2 \pi {R_p}^2\)), per questo si è usato questa forma, perché il flusso intercettato è pari alla sezione trasversale del pianeta (\(\pi {R_p}^2\)), non tutta la sua superficie, mentre invece tutta la superficie del pianeta, quindi anche la parte in ombra, è coinvolta nella riemissione di energia (\( 4 \pi {R_p}^2\)).
Una parte del’energia ricevuta dal pianeta viene riflessa comunque nello spazio in base al suo indice di riflessione (fosse idealmente bianco la rifletterebbe tutta così come se fosse idealmente nero l’assorbirebbe tutta); questo indice si chiama albedo \(A\) e varia di conseguenza tra 1 e 0. La forma “\(1- A\)” consente di stabilire quanta energia è quindi assorbita da un pianeta: $$ (1-A) \times 4 \pi {R_\odot}^2 \sigma {T_\odot}^2\times \left ( \frac{R_p}{2a} \right )^2\tag{2}$$

Semplificando il tutto e eliminando per un attimo anche la superficie della sezione trasversale del pianeta, quasi insignificante come contributo al calcolo, si raggiunge questo risultato: $$ {T_{eq}}^4 =(1-A){T_\odot}^4\left ( \frac{R_\odot}{2a} \right )^2\tag{3}$$ $$T_{eq} =(1-A)^{1/4}{T_\odot}\sqrt{\left ( \frac{R_\odot}{2a} \right )}\tag{4}$$
Se usassimo questi valori per la Terra usando come è stato detto le lunghezze espresse in unità astronomiche otterremo: $$T{eq}= (1-0,36)^{1/4} \cdot 5778 \sqrt{ \left(\frac{4,625 \times 10^{-03}}{2 \cdot 1 }\right )}=249 K\tag{5}$$

Purtroppo non è dato sapere a priori l’albedo di un qualsiasi pianeta, esso varia infatti col tipo e composizione chimica dell’atmosfera e del suolo di un pianeta, per questo può risultare conveniente omettere il computo dell’albedo nel caso di un calcolo generale senza per questo inficiarne nella bontà, un po’ come è stato fatto anche per la superficie del pianeta prima. Così la formula può essere riscritta più semplicemente come $$ T_{eq} ={T_\odot}\sqrt{\left ( \frac{R_\odot}{2a} \right )}\tag{6}$$
Se ora volessimo calcolare entro quale intervallo di distanza dalla stella vogliamo trovare un certo intervallo di temperatura potremmo semplicemente fare l’inverso per aver il risultato espresso in unità astronomiche:$$ a=\frac{1}{2} \left (\frac{T_\odot}{T_{eq}} \right)^{2}R_\odot\tag{7}$$

Diagramma di fase dell'acqua. La possibilità dell'acqua di rimanere allo stato liquido a pressioni molto elevate le consente di svolgere il ruolo di lubrificante delle placche continentali. Fonte dell'immagine: Wikipedia.

Diagramma di fase dell’acqua in ordine alla temperatura e pressione.
Fonte dell’immagine: Wikipedia.

Per trovare un intervallo di temperature compreso tra 240 K e 340 K nel Sistema Solare dovremmo andare tra i 1,35 e 0,67 AU.
Perché ho usato questo strano intervallo di temperature pur sapendo che alla pressione canonica di 1 atmosfera l’acqua esiste allo stato liquido tra i 273 e i 373 K?
Semplice 2! Ogni pianeta possiede una sua atmosfera (ce l’ha anche la Luna anche se questa è del tutto insignificante) che è in grado di assorbire e trattenere calore, è quello che viene chiamato effetto serra. L’atmosfera della Terra ad esempio garantisce a seconda dei modelli presi come riferimento da 15 a 30 e più gradi centigradi di temperatura in più rispetto alla temperatura di equilibrio planetario, consentendo così all’acqua di essere liquida pur restando ai margini superiori della zona Goldilocks del Sole.

Aggiornamento

Non riporterò questo aggiornamento di stato nel sito Tutti Dentro dove questo articolo è uscito in contemporanea a qui. Questa aggiunta è mia e me ne assumo ogni responsabilità verso i lettori per quello che sto per scrivere.

[table “70” not found /]

Forse non è stato compreso bene che nonostante il ruolo dell’albedo sia importantissimo nel calcolo esatto per stabilire se una precisa orbita cade all’interno di una zona Goldilocks, esso purtroppo è un dato che non è possibile stabilire per adesso nel caso dei pianeti extrasolari. Si possono considerare un ampio spettro di possibilità, diciamo tra un albedo di 0,99 e 0,01, indicare un valore medio tra questi due oppure scegliere tra uno de valori che sono suggeriti in questa tabella o oppure ancora si può scegliere di non usare affatto l’indice albedo in questa fase di calcolo, come ho fatto deliberatamente io in questa fase. Dopotutto si deve stabilire un discreto intervallo di possibili orbite di un pianeta di massa non bene definita su un ampio intervallo di possibili temperature di equilibrio attorno ad una stella lontana.
Prendiamo ad esempio il Sistema Solare visto da una manciata di parsec e si supponga fosse stato possibile identificare sia Venere che la Terra, di conoscere la loro distanza e il loro  albedo.
Applicando l’equazione sprovvista del computo dell’albedo qui sopra (\(\frac{1}{2} \left (\frac{T_\odot}{T_{eq}} \right)^{2}R_\odot\)) , essa restituisce una temperatura di equilibrio, che per Venere sappiamo essere di  253 kelvin, di 327  K, ma che corretta per l’albedo, ossia: $$ a=\frac{1}{2} \left (\frac{T_\odot}{T_{eq}} \right)^{2} R_\odot \sqrt{1-A}$$ dà esattamente il valore corretto. Un errore del 29% in più ma che per albedo inferiori tende quasi ad annullarsi.
Un altro metodo che era stato proposto e fatto passare come l’unico valido $$ a=\frac{\sqrt{1-A}}{2} R_\odot \left (\frac{T_\odot}{T_{eq}}\right)^2 $$ sembra esattamente equivalente allo stesso metodo corretto per l’albedo qui suggerito (\(\frac{1}{2} \left (\frac{T_\odot}{T_{eq}} \right)^{2} R_\odot \sqrt{1-A}\)), ma si dimostra essere del tutto fallace se usato senza tenere conto dell’albedo; con lo stesso esempio precedente si arriva a definire la temperatura di equilibrio di Venere a 462 K, l’83% in più.

Sono piccolezze, è vero, e di solito non amo polemizzare – anche se qualcuno potrebbe pensare il contrario – e ammetto che non sono un gran genio nella matematica, di solito faccio dei casini enormi nelle semplificazioni (ma non in questo caso). Ma amo sperimentare, rifare i calcoli decine di volte prima di scriverli e pubblicarli, per cui quando lo faccio so che sono corretti e testati decine di volte come in questo caso.
Ho scelto di offrire il mio modesto aiuto a una cara amica per questo appuntamento e scoprire che presuntuosamente veniva affermato che questo lavoro era sostanzialmente errato non l’ho proprio digerito. Con questo  stupido esempio ho voluto mostrare la bontà di questo lavoro  che consente a scapito di un lieve margine di errore di poter essere usato anche senza tener conto dell’albedo di un pianeta; ho scelto Venere perché avendo l’albedo più elevata era quello che più avrebbe messo in difficoltà il procedimento descritto in questo articolo (se avessi usato la Terra avrei avuto un 12% a fronte di 58%).
Quindi il mio invito è quello di non raccattare formule a caso qua e là sulle pubblicazioni più disparate e spacciarle per buone senza averle prima provate, smembrate e ricomposte; qui l’errore è evidente, non serve molto per vederlo. Potreste dire poi delle castronerie che prima o poi si rivelano per quel che sono: ciarpame.

Zenone , Olbers e l’energia oscura (prima parte)

Mi pareva di aver già trattato in passato lo spinoso problema dell’Energia Oscura. Questo è un dilemma abbastanza nuovo della cosmologia (1998 se non erro) e sin oggi il più incompreso e discusso (spesso a sproposito). Proverò a parlarne partendo da lontano …

[video_lightbox_youtube video_id=”HRoJW2Fu6D4&rel=false” auto_thumb=”1″ width=”800″ height=”450″ auto_thumb=”1″]Alvy: «L’universo si sta dilatando»
Madre: «L’universo si sta dilatando?»
Alvy: «Beh, l’universo è tutto e si sta dilatando: questo significa che un bel giorno scoppierà, e allora quel giorno sarà la fine di tutto»
Madre: «Ma sono affari tuoi, questi?»
(Io e Annie, Woody Allen 1997)

Attorno al V secolo a.C. visse un filosofo che soleva esprimersi per paradossi. Si chiamava Zenone di Elea e sicuramente il suo più celebre fu quello di “Achille e la tartaruga“.
In questo nonsense Zenone affermava che il corridore Achille non avrebbe mai potuto raggiungere e superare una tartaruga se questa in un’ipotetica sfida fosse partita in vantaggio indipendentemente dalle doti del corridore; questo perché nel tempo in cui Achille avesse raggiunto il punto di partenza della tartaruga, quest’ultima sarebbe intanto andata avanti e così via percorrendo sì spazi sempre più corti rispetto ad Achille ma comunque infiniti impedendo così al corridore di raggiungere mai l’animale. Si narra anche che un altro filosofo,  Diogene di Sinope, a questo punto del racconto si fosse alzato e camminato, dimostrando l’infondatezza di quel teorema.
È abbastanza evidente l’infondatezza empirica di quel paradosso, nella sua soluzione Aristotele parlava di spazio e di tempo divisibili all’infinito in potenza ma non di fatto, una nozione oggi cara che si riscopre nella Meccanica Quantistica con i concetti di spazio e di tempo di Planck, ma ragionare su questo ora non è il caso.
Piuttosto, immaginiamoci cosa succederebbe se lo spazio tra \(A\) (la linea di partenza di Achille) e \(B\) (la tartaruga) nel tempo \(t\) che impiega Achille a percorrerlo si fosse dilatato. Chiamiamo \(D\) la distanza iniziale e \(v\) la velocità costante con cui Achille si muove: nella fisica classica diremmo che \(D\) è dato da \(t \times v\), ovvio. Ma se nel tempo \(t/2\) la \(D\) è cresciuta di una lunghezza che chiameremo \(d\), alla fine quando Achille coprirà la distanza \(D\), il punto \(B\) sarà diventato \(D + 2d\) e la tartaruga non sarebbe stata raggiunta nel tempo finito \(t\) neppure se fosse rimasta ferma.

Animazione artistica del Paradosso di Olbers.

Animazione artistica del Paradosso di Olbers.

Se sostituissimo ad Achille un quanto di luce, un fotone come ad esempio il buon vecchio Phòs, e alla pista della sfida il nostro Universo, avremmo allora ricreato esattamente il medesimo quadro fisico. Nel 1826 un medico e astrofilo tedesco, Heinrich Wilhelm Olbers, si chiese perché mai osservando il cielo di notte questo fosse nero. Supponendo che l’universo fosse esistito da sempre, fosse infinito e isotropo (oggi sappiamo che non è vera quasi nessuna di queste condizioni e l’Universo è isotropo solo su grande scala, ma facciamo per un attimo finta che lo siano), allora verso qualsiasi punto noi volgessimo lo sguardo dovremmo vedere superfici stellari senza soluzione di continuità. Questa domanda in realtà se l’erano posta anche Keplero, Isaac Newton e Edmund Halley prima di lui ma non sembrava allora forse una questione importante come invece lo è.
138 anni dopo, nel 1964, due ricercatori della Bell Telephone Company che stavano sperimentando un nuovo tipo di antenna a microonde, Arno Penzias e Robert Wilson [cite]http://ilpoliedrico.com/2014/03/echi-da-un-lontano-passato-la-storia.html[/cite] scoprirono uno strano tipo di radiazione che pareva provenire con la stessa intensità da ogni punto del cielo. Era la Radiazione Cosmica di Fondo a Microonde (Cosmic Microwave Background Radiation) che l’astrofisico rosso naturalizzato statunitense George Gamow negli anni ’40 aveva previsto 1 [cite]https://arxiv.org/abs/1411.0172[/cite] sulle soluzioni di Alexander Friedmann che descrivono un universo non statico come era stato dimostrato dal precedente lavoro di Hubble e Humason sulla recessione delle galassie. Questa intuizione è oggi alla base delle attuali teorie cosmologiche che mostrano come i primi istanti dell’Universo siano stati in realtà dominati dall’energia piuttosto che la materia, e che anche l’Universo stesso ha avuto un’inizio temporalmente ben definito – anzi il tempo ha avuto inizio con esso – circa 13,7 miliardi di anni fa, giorno più giorno meno. Il dominio dell’energia nell’Universo durò fino all’epoca della Ricombinazione, cioè fin quando il protoni e gli elettroni smisero di essere un plasma caldissimo e opaco alla radiazione elettromagnetica e si combinarono in atomi di idrogeno. In quel momento tutto l’Universo era caldissimo (4000 K, quasi come la superficie di una nana rossa). E qui che rientra in gioco il Paradosso di Olbers: perché oggi osserviamo che lo spazio fra le stelle e le galassie è freddo e buio permeato però da un fondo costante di microonde? Per lo stesso motivo per cui in un tempo finito \(t\) Achille non può raggiungere la linea di partenza della tartaruga, lo spazio si dilata.
Electromagneticwave3DI fotoni, i quanti dell’energia elettromagnetica come Phòs, si muovono a una velocità molto grande che comunque è finita, 299792,458 chilometri al secondo nel vuoto, convenzionalmente indicata con \(c\). Queste particelle, che appartengono alla famiglia dei bosoni, sono i mediatori dei campi elettromagnetici. La frequenza di oscillazione di questi campi in un periodo di tempo \(t\) ben definito (si usa in genere per questo il secondo: \(f= 1/t\)) determina la natura del fotone e è indicata con \(f\): più è bassa la frequenza e maggiore la lunghezza d’onda: frequenze molto basse sono quelle delle onde radio (onde lunghe e medie, che in genere corrispondono alle bande LF e  AM della vostra radio, anche se AM sarebbe un termine improprio 2), poi ci sono le frequenze ben più alte per le trasmissioni FM 3, VHF, UHF, microonde, infrarossi, luce visibile, ultravioletti, raggi X e Gamma, in quest’ordine. Tutte queste sono espressioni del campo elettromagnetico si muovono nello spazio alla medesima velocità \(c\), quello che cambia è solo la frequenza: $$f=\frac{c}{\lambda}$$
Ma è anche vero che una velocità è l’espressione di una distanza \(D\) per unità di tempo (\( D=t \times v\)), pertanto nel caso della luce potremmo anche scrivere che \(D=t \times c\). Ma se \(D\) cambia mentre \(c\) è costante, allora è anche \(t\) a dover cambiare. Per questo ogni variazione delle dimensioni dello spazio si ripercuote automaticamente nella natura dei campi associati ai fotoni: un aumento di \(D\) significa anche un aumento della lunghezza d’onda, quello che in cosmologia si chiama redshift cosmologico. Potremmo vederla anche come l’aumento della distanza tra diversi punti di un’onda con i medesimi valori del campo elettromagnetico (creste o valli) ma è esattamente la stessa cosa.
Per questo percepiamo buio il cielo: la natura finita e immutabile della velocità della luce trasla verso frequenze più basse la natura della luce stessa, tant’è che quello che noi oggi percepiamo la radiazione cosmica di fondo a microonde con una temperatura di appena 2,7 kelvin è la medesima radiazione caldissima che permeava l’intero Universo  380000 anni dopo che si era formato.
La migliore stima dell’attuale ritmo di espansione dell’Universo è di 73,2 chilometri per megaparsec per secondo, un valore enormemente piccolo, appena un decimo di millimetro al secondo su una distanza paragonabile a quella che c’è tra il Sole e la stella più vicina. Eppure l’Universo è così vasto che questo è sufficiente per traslare verso lunghezze d’onda maggiori tutto quello che viene osservato su scala cosmologica, dalla luce proveniente da altre galassie agli eventi parossistici che le coinvolgono. Questo perché l’effetto di stiramento è cumulativo, al raddoppiare della distanza l’espansione raddoppia, sulla distanza di due megaparsec lo spazio si dilata per 146,4 chilometri e così via, e questo vale anche per il tempo considerato, in due secondi la dilatazione raddoppia.
Le implicazioni cosmologiche sono enormi, molto più dell’arrossamento della luce cosmologico fin qui discusso. Anche le dimensioni dello stesso Universo sono molto diverse da quello che ci è dato vedere. Noi percepiamo solo una parte dell’Universo, ciò che viene giustamente chiamato Universo Osservabile che è poi è la distanza che può aver percorso il nostro Phòs nel tempo che ci separa dal Big Bang, 13,7 miliardi di anni luce.

Ora dovrei parlare del perché l’Universo si espande e del ruolo dell’Energia Oscura in tutto questo, ma preferisco discuterne in una seconda puntata. Abbiate pazienza ancora un po’.
Cieli sereni.

Materia oscura: e se fossero anche dei buchi neri?

Rotationcurve_3 Sappiamo che la materia oscura esiste nelle galassie, perché la curva di rotazione è piatta anche a grandi distanze dal centro della galassia. La "curva di rotazione" non è altro che un grafico di quanto velocemente le stelle di una galassia ruotano in funzione della loro distanza dal centro. La gravità predice che \(V = \sqrt (GM / R)\). La "M" indica tutta la massa che è racchiusa all'interno del raggio R. Una curva di rotazione è piatta quando la velocità è costante, cioè che in qualche modo \(M / R\) è costante. Quindi questo significa che come andiamo sempre più in una galassia, la massa è in crescita anche se pare che le stelle finiscano. La naturale conseguenza se le le leggi di gravitazione sono corrette è che allora deve esserci una qualche forma di materia che non vediamo. Anche altre osservazioni cosmologiche indicano l'esistenza della materia oscura e, sorprendentemente, predicono all'incirca la stessa quantità!

Sappiamo che la materia oscura esiste nelle galassie, perché la curva di rotazione è piatta anche a grandi distanze dal centro della galassia. La “curva di rotazione” non è altro che un grafico di quanto velocemente le stelle di una galassia ruotano in funzione della loro distanza dal centro. La gravità predice che \(V = \sqrt (GM / R)\). La “M” indica tutta la massa che è racchiusa all’interno del raggio R. Una curva di rotazione è piatta quando la velocità è costante, cioè che in qualche modo \(M / R\) è costante. Quindi questo significa che come andiamo sempre più in una galassia, la massa è in crescita anche se pare che le stelle finiscano. La naturale conseguenza se le le leggi di gravitazione sono corrette è che allora deve esserci una qualche forma di materia che non vediamo. Anche altre osservazioni cosmologiche indicano l’esistenza della materia oscura e, sorprendentemente, predicono all’incirca la stessa quantità!

Finora – e credo che non lo sarà ancora per diverso tempo – la reale natura della materia oscura non è stata chiarita. Non sto ancora a ripetermi nello spiegare per filo e per segno come si sia arrivati a concludere che molta materia che percepiamo è in realtà una frazione di quella che gli effetti gravitazionali (curve di rotazione delle galassie) mostrano.
Se avete letto il mio articolo su quante stelle ci sono nella nostra galassia [cite]http://ilpoliedrico.com/2015/12/quante-stelle-ci-sono-nella-via-lattea.html[/cite] lì spiego che a concorrere alla massa totale di una galassia ci sono tante componenti barioniche (cioè composte da protoni e neutroni) più gli elettroni che non sono solo stelle. Ci sono anche corpi di taglia substellare, pianeti erranti, stelle degeneri e buchi neri di origine stellare, il risultato cioè della fine di enormi stelle  che dopo essere esplose come supernova hanno lasciato sul campo nuclei con una massa compresa tra le 3 e le 30 masse solari, tra i 9 e i 90 km di raggio. Questi oggetti non sono direttamente osservabili perché non emettono una radiazione rilevabile, ma i cui effetti gravitazionali sono ben visibili quando si studiano le quantità di moto di galassie e ammassi di queste rispetto al centro di gravità comune.
Obbiettivamente stimare la massa barionica non visibile di una galassia è molto difficile ma se prendiamo come esempio  il Sistema Solare il 99,8% dell’intera sua massa è nel Sole, una stella. Anche decidendo di considerare che la materia barionica non direttamente osservabile fosse un fattore dieci o venti volte più grande di quella presente nel Sistema Solare ed escludendo a spanne tutta la materia stellare degenere (nane bianche, stelle di neutroni e buchi neri) non più visibile presente in una tipica galassia come la nostra, in numeri ancora non tornano.
Più o meno tutte le galassie pare siano immerse in una tenue bolla di gas caldissimo grande circa cinque o sei volte la galassia stessa, probabilmente frutto del vento stellare galattico e dei processi parossistici dei nuclei galattici. Queste bolle sono impalpabili e caldissime a tal punto che solo da poco ne è stata avvertita la presenza [cite]http://hubblesite.org/newscenter/archive/releases/2011/37/[/cite], capaci quanto basta però per contenere una massa pari alla parte visibile; questo significa che finora la massa barionica di una galassia è stata finora sottostimata di un fattore 2.
Ma tutto questo ancora non basta. Anche se volessimo comunque raddoppiare o perfino triplicare le stime precedenti della massa barionica, verrebbe fuori che comunque una frazione ancora piuttosto cospicua di massa manca all’appello: almeno tra i due terzi e la metà mancherebbero comunque all’appello.
grafico universoE sulla natura di questa materia oscura (oscura appunto perché non visibile direttamente o indirettamente tranne che per la sua presenza come massa) che si sono avanzate le più disparate ipotesi.
Una di queste prevede che se, come molti esperimenti mostrano [cite]http://ilpoliedrico.com/2013/02/la-stupefacente-realta-del-neutrino.html[/cite], che i neutrini hanno una massa non nulla, allora questi potrebbero essere i responsabili della massa mancante. Questa si chiama Teoria WIMP (Weakly Interacting Massive Particle) Calda, cioè particelle debolmente interagenti dotate di massa che si muovono a velocità relativistiche. Particelle così sono note da sessant’anni, sono i neutrini che, grazie alla loro ridotta sezione d’urto e alla loro incapacità di  interagire con la forza nucleare forte (quella che cioè tiene uniti i quark e il nucleo degli atomi) e l’interazione elettromagnetica – però interagiscono bene con la forza nucleare debole (quella responsabile del decadimento radioattivo) e la forza gravitazionale – sono esattamente elusivi quanto si chiede alla materia oscura. Purtroppo se la materia oscura si identificasse unicamente nei neutrini avremmo un grande problema: forse non esisteremmo! Tutte le strutture di scala fine, le galassie e quindi le stelle, non avrebbero avuto modo di formarsi, disperse dai neutrini e dall’assenza di zone di più alta densità verso cui concentrarsi. Pertanto la Hot Dark Matter –  Materia Oscura Calda – non può essere stata rilevante alla formazione dell’Universo [cite]https://arxiv.org/abs/1210.0544[/cite].
Quindi se la materia oscura non può avere una rilevante componente calda, cioè che si muove a velocità relativistiche come i neutrini, deve essere prevalentemente fredda, cioè che, come la materia ordinaria, è statica. Una possibile spiegazione al mistero della materia oscura fa ricorso a oggetti barionici oscuri, che cioè non emettono una radiazione percettibile ai nostri strumenti, i cosiddetti MACHO (Massive Astrophysical Compact Halo Object) ossia oggetti compatti di alone. Questi MACHO sono composti da resti di stelle ormai morte come nane bianche e stelle di neutroni ormai freddi, buchi neri, stelle mancate e pianeti erranti. Certamente oggetti simili esistono e sono una componente importante della massa di qualsiasi galassia e più queste invecchiano più la componente degenere che contengono aumenta. L’indice di colore delle galassie associato alla loro massa viriale lo dimostra. Ma tutta la componente barionica dell’Universo può essere calcolata anche usando il rapporto tra gli isotopi dell’elio 4He e litio  7Li usciti dalla nucleosintesi cosmica iniziale come descritto dai modelli ΛCDM e questo pone un serio limite alla quantità di materia barionica degenere possibile [cite]http://xxx.lanl.gov/abs/astro-ph/0607207[/cite]. Pertanto risolvere il dilemma della materia oscura ricorrendo ai MACHO è impossibile.
Le uniche altre vie percorribili paiono essere quelle che fanno ricorso a particelle non barioniche (come i neutrini) ma che siano statiche come la materia barionica ordinaria: le cosiddette Cold WIMP, ovvero particelle debolmente interagenti dotate di massa non dotate di moto proprio è appunto una di queste. Particelle simili non sono ancora state osservate direttamente ma la cui esistenza può anch’essa essere dimostrata indirettamente confrontando le abbondanze isotopiche accennate prima [cite]http://arxiv.org/abs/astro-ph/9504082[/cite] con le equazioni di Friedmann.

Il pannello di destra è un'immagine ottenuta dallo Spitzer Space Telescope di stelle e galassie nella costellazione dell'Orsa Maggiore. L'immagine ad infrarossi copre una regione di spazio di 100 milioni di anni luce Il pannello di sinistra è la stessa immagine dopo che le stelle, le galassie e le altre fonti sono state mascherate. La luce di fondo rimasta risale al0 tempo in cui l'universo aveva meno di un miliardo di anni, e molto probabilmente è originata dai primissimi gruppi di oggetti dell'Universo-  grandi stelle o buchi neri attivi. Le tonalità più scure nell'immagine a sinistra corrispondono a parti più vuote dello spazio, mentre il giallo e bianco le zone più attive.

Il pannello di destra è un’immagine ottenuta dallo Spitzer Space Telescope di stelle e galassie nella costellazione dell’Orsa Maggiore. L’immagine ad infrarossi copre una regione di spazio di 100 milioni di anni luce Il pannello di sinistra è la stessa immagine dopo che le stelle, le galassie e le altre fonti sono state mascherate. La luce di fondo rimasta risale al0 tempo in cui l’universo aveva meno di un miliardo di anni, e molto probabilmente è originata dai primissimi gruppi di oggetti dell’Universo-  grandi stelle o buchi neri attivi. Le tonalità più scure nell’immagine a sinistra corrispondono a parti più vuote dello spazio, mentre il giallo e bianco le zone più attive.

Ora appare una ricerca [cite]https://arxiv.org/abs/1605.04023[/cite] che suggerisce che buona parte della parte della massa mancante sia collassata in buchi neri subito dopo il Big Bang. A riprova di questo studio viene portata la scoperta di numerose anisotropie nella radiazione cosmica infrarossa (CIB) rilevate nel corso di una survey del cielo a partire dal 2005 dal telescopio infrarosso Spitzer della NASA .
L’autore di questo studio (Kashlinsky) suggerisce che nei  primissimi istanti di vita dell’Universo (Era QCD da Quantum ChromoDynamics o Era dei Quark, tra i 10-12 secondi e i 10-6 secondi dopo il Big Bang) si siano verificate delle fluttuazioni quantistiche di densità che hanno dato origine ai buchi neri primordiali. Il meccanismo, per la verità non nuovo, è quello descritto anche da Jedamzik [cite]http://arxiv.org/abs/astro-ph/9605152[/cite] nel 1996 sui buchi neri primordiali creatisi nell’Era dei Quark. Nella sua opera Jedamskin prevede anche che a causa dell’espansione iniziale dell’Universo i buchi neri primordiali si possono essere formati solo per un ristretto intervallo di massa. Un aspetto importante che mi sento di sottolineare è che questi buchi neri primordiali non sono il prodotto del collasso gravitazionale di materia barionica come il nucleo di una stella, ma bensì il collasso di una fluttuazione di densità nel brodo di  quark e gluoni che in quell’istante stava emergendo; quindi prima della Leptogenesi e della Nucleosintesi Iniziale dell’Universo. Ma coerentemente con la fisica dei buchi neri la natura della sostanza che li ha creati  non ha alcuna importanza: che fossero orsetti gommosi o  il collasso di un nucleo stellare il risultato è il medesimo.
Finalmente Kashlinsky pare essere riuscito a trovare una prova visiva di quello che in pratica ha da sempre sostenuto, e che cioè almeno una buona parte della materia oscura possa essere spiegata da questi oggetti primordiali. Una conferma interessante a questa tesi potrebbe essere rappresentata dalla scoperta dei segnali dell’evaporazione  dei buchi neri più piccoli (1015 g) che dovrebbero essere stati generati durante l’Era dei Quark come proposto nel 2004 da BJ Carr [cite]http://arxiv.org/abs/astro-ph/0504034[/cite].
L’idea in sé quindi che buona parte della materia oscura possa essere interpretata come buchi neri primordiali non è affatto nuova. Va riconosciuto a Kashlinsky il merito di averci creduto e di aver trovato prove abbastanza convincenti per dimostrarlo. Certo il dilemma della materia oscura rimane a dispetto dei tanti annunci apparsi in questi giorni e ci vorranno ancora anni di indagine per svelarlo. Io penso che sia un ragionevole mix di tutte le idee qui proposte, anche perché l’attuale modello ΛCDM pone – come abbiamo visto – dei limiti piuttosto stringenti per l’attuale densità barionica che di fatto esclude le forme di materia convenzionale (vedi MACHO) oltre quelle già note. Anche il ruolo dei neutrini primordiali nella definizione delle strutture di scala fine dell’Universo merita attenzione, Alla fine forse scopriremo che la materia oscura è esistita fin quando non abbiamo cercato di comprenderne la sua natura.

Alla ricerca di forme di vita evolute: i limiti del Principio di Mediocrità

La vita è poi così comune nell’Universo? Oppure l’Uomo – inteso come forma di vita evoluta – è veramente una rarità nel’infinito cosmo? Forse le risposte a queste domande sono entrambe vere.

16042016-2D68D8DD00000578-0-image-a-23_1459508636554Finora il Principio di Mediocrità scaturito dal pensiero copernicano ci ha aiutati a capire molto del cosmo che ci circonda. L’antico concetto che pone l’Uomo al centro dell’Universo – Principio Antropocentrico – ci ha fatto credere per molti secoli in cosmogonie completamente errate, dalla Terra piatta all’idea di essere al centro dell’Universo, dall’interpretazione del moto dei pianeti alla posizione del sistema solare nella Galassia (quest’ultimo ha resistito fino alla scoperta di Hubble sull’espansione dell’Universo).
Per questo è comprensibile e del tutto legittimo estendere il Principio di Mediocrità anche alla ricerca della vita extraterrestre. Dopotutto nulla vieta che al presentarsi di condizioni naturali favorevoli il fenomeno Vita possa ripetersi anche altrove: dalla chiralità molecolare [cite]http://ilpoliedrico.com/2014/10/omochiralita-quantistica-biologica-e-universalita-della-vita.html[/cite] ai meccanismi che regolano il  funzionamento cellulare sono governate da leggi fisiche che sappiamo essere universali.
Una delle principali premesse che ci si attende da un pianeta capace di sostenere la vita è quello che la sua orbita sia entro i confini della zona Goldilocks, un guscio sferico che circonda una stella (in genere è rappresentato come fascia ma è un concetto improprio) la cui temperatura di equilibrio di radiazione rientri tra il punto di ebollizione e quello di congelamento dell’acqua (273 – 373 Kelvin)  intorno ai 100 kiloPascal di pressione atmosferica; un semplice esempio lo si può trovare anche su questo sito [cite]http://ilpoliedrico.com/2012/12/la-zona-circumstellare-abitabile-del-sole.html[/cite]. Ci sono anche altri vincoli [cite]http://ilpoliedrico.com/?s=+goldilocks[/cite] ma la presenza di acqua liquida pare essere fondamentale 1.
Anche se pur con tutti questi limiti il Principio di Mediocrità suggerisce che la biologia a base carbonio è estremamente diffusa nell’Universo, e questo non stento a crederlo. Stando alle migliori ipotesi le stelle che possono ospitare una qualche forma di sistema planetario potenzialmente adatto alla vita solo in questa galassia sono almeno 10 miliardi. Sembra un numero considerevole ma non dimentichiamo che la Via Lattea ospita circa 200 miliardi di stelle. quindi si tratta solo una stella su venti.
orologio geologicoMa se questa stima vi fa immaginare che là fuori ci sia una galassia affollata di specie senzienti alla Star Trek probabilmente siete nel torto: la vita per attecchire su un pianeta richiede tempo, molto tempo.
Sulla Terra occorsero almeno un miliardo e mezzo di anni prima che comparissero le prime forme di vita fotosintetiche e le prime forme di vita con nucleo cellulare differenziato dette eukaryoti – la base di quasi tutte le forme di vita più complessa conosciute – apparvero solo due miliardi di anni fa. Per trovare finalmente le forme di vita più complesse e una biodiversità simile all’attuale  sul pianeta Terra bisogna risalire a solo 542 milioni di anni fa, ben poca cosa se paragonati all’età della Terra e del Sistema Solare!

Però, probabilmente, il Principio di Mediocrità finisce qui. La Terra ha una cosa che è ben in evidenza in ogni momento e, forse proprio per questo, la sua importanza è spesso ignorata: la Luna.
Secondo recenti studi [cite]http://goo.gl/JWkxl1[/cite] la Luna è il motore della dinamo naturale che genera il campo magnetico terrestre. L’idea in realtà non è nuova, ha almeno cinquant’anni, però aiuta a comprendere il perché tra i pianeti rocciosi del Sistema Solare la Terra sia l’unico grande pianeta roccioso 2 ad avere un campo magnetico abbastanza potente da deflettere le particelle elettricamente cariche del vento solare e dei raggi cosmici. Questo piccolo particolare ha in realtà una grande influenza sulle condizioni di abitabilità sulla crosta perché ha consentito alla vita di uscire dall’acqua dove sarebbe stata più protetta dalle radiazioni ionizzanti, ha permesso che la crosta stessa fosse abbastanza sottile e fragile da permettere l’esistenza di zolle continentali in movimento – il che consente un efficace meccanismo di rimozione del carbonio dall’atmosfera [cite]http://ilpoliedrico.com/2013/12/la-caratterizzazione-delle-super-terre-il-ciclo-geologico-del-carbonio.html[/cite][cite]http://ilpoliedrico.com/2013/07/venere-e-terra-gemelli-diversi.html[/cite] – e la stabilizzazione dell’asse terrestre.
In pratica la componente Terra Luna si comporta come Saturno con Encelado e, in misura forse minore, Giove con Europa.
Il gradiente gravitazionale prodotto dai due pianeti deforma i satelliti che così si riscaldano direttamente all’interno. Per questo Encelado mostra un vulcanismo attivo e Europa ha un oceano liquido al suo interno in cui si suppone possa esserci le condizioni ideali per supportare una qualche forma di vita. Nel nostro caso è l’importante massa della Luna che deforma e mantiene fuso il nucleo terrestre tanto da stabilizzare l’asse del pianeta, fargli generare un importante campo magnetico e possedere una tettonica attiva [cite]http://ilpoliedrico.com/2010/11/limportanza-di-un-nucleo-fuso.html[/cite].

Ora, se le nostre teorie sulla genesi lunare sono corrette 3, questo significa che una biologia così varia e complessa come quella sulla Terra è il prodotto di tutta una serie di eventi che inizia con la formazione del Sistema Solare e arriva fino all’Homo Sapiens passando attraverso la formazione del nostro curioso – e prezioso – satellite e le varie estinzioni di massa. Tutto questo la rende molto più rara di quanto suggerisca il Principio di Mediocrità. Beninteso, la Vita in sé è sicuramente un fenomeno abbastanza comune nell’Universo ma una vita biologicamente complessa da dare origine a una specie senziente capace di produrre una civiltà tecnologicamente attiva è probabilmente una vera rarità nel panorama cosmico.

Le quattro fasi che avrebbero portato la Terra ad avere un grande campo magnetico (MFI Moon-forming impact, Impatto che dette origine alla Luna)

Le quattro fasi che avrebbero portato la Terra ad avere un grande campo magnetico (MFI Moon-forming impact, Impatto che dette origine alla Luna)

Analizziamo per un attimo più da vicino il sistema Terra-Luna.
La distanza media tra il centro della Luna e il centro della Terra è di circa 384390 chilometri. Questo varia tra l’apogeo e il perigeo dell’orbita ma sostanzialmente questa è una cosa che non inficia il nostro conto.
Questo significa che nello stesso momento la parte più vicina alla Luna è distante 1,66% in meno della distanza Terra-Luna mentre la sua parte opposta lo è della stessa misura in più; tradotto in numeri la parte rivolta direttamente alla Luna dista dal suo centro 378032 km  mentre la parte più lontana 390774 km. Il 3,32% di discrepanza tra le due facce non pare poi molto, ma significa che se stabiliamo che la forza esercitata gravitazionale dal satellite sulla faccia più vicina fosse pari a 100, la forza esercitata sul lato opposto sarebbe solo del 96,74%. Il risultato è che la faccia rivolta verso la Luna è attratta da questa di più del centro del pianeta e la faccia più lontana ancora di meno, col risultato di deformare la Terra ad ogni rotazione..
Ma anche la Terra esercita la sua influenza sul suo satellite allo stesso modo. Ma essendo la Luna più piccola, anche la caduta gravitazionale tra le due facce è molto più piccola, circa 1,8%. Essendo solo un quarto della Terra ma anche 81 volte meno massiccia la forza di marea esercitata dalla Terra sulla Luna è circa 22 volte dell’opposto.
Mentre la Terra ruota si deforma di circa mezzo metro, la frizione interna spinge la crosta nel sollevarsi e ricadere e, per lo stesso meccanismo si ha produzione di calore nel nocciolo e nel mantello e il più evidente fenomeno di marea sulle grandi masse d’acqua del pianeta. Ma l’effetto mareale combinato con la rotazione terrestre fa in modo che la distribuzione delle masse sia leggermente in avanti rispetto all’asse ideale Terra-Luna. Questo anticipo disperde parte del momento angolare in cambio di un aumento della distanza media tra Terra e Luna. La durata del giorno aumenta così – attualmente – di 1,7 secondi ogni 100 000 anni mentre pian piano la Luna si allontana al ritmo di 3,8 centimetri ogni anno [cite]http://goo.gl/ALyU92[/cite], mentre la frizione mareale indotta restituisce parte del calore che sia il mantello che il nucleo disperdono naturalmente. Questo calore mantiene il nucleo ancora allo stato fuso dopo ben 4,5 miliardi di anni, permettendogli di generare ancora il campo magnetico che protegge la vita sulla superficie.
Ecco perché l’idea dell’unicità della Terra non è poi del tutto così peregrina. Non è un istinto puramente antropocentrico, quanto semmai la necessità di comprendere che la Terra e la Luna sono da studiarsi come parti di un unico un sistema che ha permesso che su questo pianeta emergessero tutte quelle condizioni favorevoli allo sviluppo di vita che poi si è concretizzata in una specie senziente. Queste condizioni avrebbero potuto crearsi altrove – e forse questo è anche avvenuto – invece che qui e allora noi non saremmo ora a parlarne. Ma è questo è quel che è successo e se questa ipotesi fosse vera farebbe di noi come specie senziente una rarità nel panorama cosmico.
Come ebbi a dire in passato, anche se il concetto non è del tutto nuovo, Noi siamo l’Universo che in questo angolo di cosmo ha preso coscienza di sé e che si interroga sulla sua esistenza. Forse questo angolo è più vasto di quanto si voglia pensare; il che ci rende ancora più unici.


Note:

Osservate per la prima volta le onde gravitazionali con LIGO

A_long_time_ago

… c’era una coppia di buchi neri, uno di circa 36 volte la massa del Sole mentre l’altro era un po’ più piccolo, di sole 29 masse solari. Questi due pesantissimi oggetti, attratti l’uno dall’altro in una mortale danza a spirale hanno finito per fondersi insieme, come una coppia di ballerini sul ghiaccio che si abbraccia in un vorticoso balletto. Il risultato però è un po’ diverso: qui ne è uscito un oggetto un po’ più piccolo della semplice somma algebrica delle masse: 62 masse solari soltanto.
Il resto è energia dispersa, non molta per la verità date le masse in gioco, pressappoco come quanta energia potrebbe emettere il Sole nell’arco di tutta la sua esistenza. Solo che questa è stata rilasciata in un singolo istante come “onde gravitazionali“.

Ma cos’è un’onda gravitazionale?

spacetime-02La visione dello spazio che da sempre conosciamo è composta da tre uniche dimensioni, larghezza, altezza e profondità; o \(x\), \(y\) e \(z\), se preferite. Il tempo, un fenomeno comunque misterioso, fino agli inizi del XX secolo era considerato a sé. Una visione – poi confermata dagli esperimenti di ogni tipo – fornitaci dalla Relatività Generale è che il tempo è in realtà una  dimensione anch’essa del tessuto dello spazio; una quarta dimensione. insieme alle altre tre 1. Fino alla Relatività Generale di Einstein si era convinti che una medesima forza, la gravità, fosse responsabile sia della caduta della celebre mela apocrifa di Newton, che quella di costringere la Luna nella sua orbita attorno alla Terra e i pianeti nelle loro orbite attorno al Sole. Nella nuova interpretazione relativistica questa forza è invece vista come una manifestazione della deformazione di  uno spazio a quattro dimensioni, lo spazio-tempo, causata dalla massa degli oggetti. Così quando la mela cade, nella Meccanica Classica (essa è comunque ancora valida, cambia solo l’interpretazione dei fenomeni) la gravità esercitata dalla Terra attrae la mela verso di essa mentre allo stesso modo – e praticamente impercettibile – la Terra si muove verso la mela, nella Meccanica Relativistica è la mela che cade verso il centro di massa del pianeta esattamente come una bilia che rotola lungo un pendio e la Terra cade verso il centro di massa della mela nella stessa misura prevista dai calcoli newtoniani.
La conseguenza più diretta di questa nuova visione dello spazio-tempo unificato, è che esso è, per usare una metafora comune alla nostra esperienza, elastico; ossia si può deformare, stirare e comprimere. E un qualsiasi oggetto dotato di massa, se accelerato, può increspare lo spazio-tempo. Una piccola difficoltà: queste increspature dello spazio-tempo, o onde gravitazionali, sono molto piccole e deboli – la gravità è di gran lunga la più debole tra le forze fondamentali della natura –  tant’è che finora la sensibilità strumentale era troppo bassa per rivelarle. Se volessimo cercare un’analogia con l’esperienza comune, potremmo immaginare lo spazio quadrimensionale come la superficie di un laghetto a due dimensioni, mentre la quarta dimensione, il tempo, è dato dall’altezza in cui si muovono le increspature dell’acqua. Qualora buttassimo un sassolino l’altezza della increspatura sarebbe piccola, ma man mano se scagliassimo pietre con maggior forza e sempre più grosse, le creste sarebbero sempre più alte. Però vedremmo anche che a distanze sempre più crescenti dall’impatto, queste onde scemerebbero di altezza e di energia, disperse dall’inerzia delle molecole d’acqua 2; alcune potrebbero perdersi nel giro di pochi centimetri dall’evento che le ha  provocate, altre qualche metro e così via. Alcune, poche,  potrebbero giungere alla riva ed essere viste come una variazione di ampiezza nell’altezza del livello dell’acqua del laghetto e sarebbero quelle generate dagli eventi più potenti che avevamo prodotto in precedenza. Queste nello spazio quadrimensionale sono le onde gravitazionali e esse, siccome non coinvolgono mezzi dotati di una massa propria per trasmettersi come ad esempio il suono che è solo un movimento meccanico di onde trasmesse attraverso un mezzo materiale,  possono muoversi alla velocità più alta consentita dalla fisica relativistica:\(c\), detta anche velocità della luce nel vuoto.

Il grande protagonista: LIGO

E’ stato LIGO-Laser Interferometer Gravitational-Wave Observatory (in italiano, Osservatorio Interferometro laser per onde gravitazionali) il protagonista di questa straordinaria scoperta: uno strumento formato da due strumenti gemelli, uno a Livingston (Louisiana) e l’altro a Hanford (Washington), a 3000 chilometri di distanza dal primo. Sono due gli interferometri, perché i dati possono venir confrontati e confermati: se entrambi gli strumenti rilevano lo stesso disturbo, allora è improbabile che sia legato ad un terremoto oppure a dei rumori di attività umana. Il primo segnale che conferma l’esistenza delle onde gravitazionali è stato rilevato dallo strumento americano Ligo il 14 settembre 2015 alle 10, 50 minuti 45 secondi (ora italiana), all’interno di una finestra di appena 10 millisecondi.

 David Reitze del progetto LIGO ha annunciato al mondo la scoperta delle onde gravitazionali: “We have detected gravitational waves. We did it!”. Crediti: LIGO

David Reitze del progetto LIGO ha annunciato al mondo la scoperta delle onde gravitazionali: “We have detected gravitational waves. We did it!”.
Crediti: LIGO

Ed eccole qui, in questo diagramma: l’onda azzurra, captata da LIGO di Livingston e l’onda arancio, captata da LIGO di Hanford. Sono sovrapponibili, il che ci dice che sono la stessa onda captata dai due strumenti gemelli. E’ la firma della fusione dei due buchi neri supermassicci con la conseguente produzione di onde gravitazionali. In altre parole, questa è la firma del nuovo buco nero che si è formato dai due precedenti e, come è accennato anche più sopra, le tre masse solari che mancano dalla somma delle due masse che si sono fuse assieme dando vita al nuovo buco nero di 62 masse solari si sono convertite in onde gravitazionali.
Volete udire il suono di un’onda gravitazionale? Sì, certo che è possibile…. E’ straordinario pensare che queste onde rappresentano la fusione di due buchi neri in uno nuovo e proviene da distanze incredibilmente grandi, in un’epoca altrettanto remota: un miliardo e mezzo di anni  fa.

Le prove indirette

Il decadimento orbitale delle due stelle di neutroni PSR J0737-3039 (qui evidenziato dalle croci rosse) corrisponde esattamente con la previsione matematica sulla produzione di onde gravitazionali.

Il decadimento orbitale delle due stelle di neutroni PSR J0737-3039 (qui evidenziato dalle croci rosse) corrisponde esattamente con la previsione matematica sulla produzione di onde gravitazionali.

La prima prova indiretta dell’esistenza delle onde gravitazionali si ebbe però nel 1974. In quell’estate, usando il radio telescopio di Arecibo, Portorico, Russel Hulse e Joseph Taylor scoprirono una pulsar che generava un segnale periodico di 59 ms, denominata PSR 1913+16. In realtà, la periodicità non era stabile e il sistema manifestava cambiamenti 3 dell’ordine di 80 microsecondi al giorno, a volte dell’ordine di 8 microsecondi in 5 minuti.
Questi cambiamenti furono interpretati come dovuti al moto orbitale della pulsar  4 attorno ad una stella compagna, come previsto dalla Teoria della Relatività Generale. Di conseguenza, due pulsar, in rotazione reciproca una attorno all’altra, emettono onde gravitazionali, in perfetta linea con la Relatività Generale. Per questi calcoli e considerazioni, Hulse e Taylor ricevettero nel 1993 il Premio Nobel per la fisica.

La presenza di una qualsivoglia stella compagna introduce delle variazioni periodiche facilmente rivelabili nel segnale pulsato della stella che i radioastronomi sono in grado di misurare con precisione inferiore ai 100 microsecondi. Giusto per farsi un’idea, immaginiamo di prendere il Sole e di farlo diventare una pulsar. Dal suo segnale pulsato, gli astronomi sarebbero in grado di rilevare la presenza di tutti i pianeti che orbitano attorno a questo Sole-pulsar, grazie al fatto che ogni pianeta causa uno spostamento del centro di massa del Sole di un certo valore espresso in microsecondi. La Terra per esempio, che si muove lungo la sua orbita ellittica, produce uno spostamento del centro di massa del Sole di ben 1500 microsecondi! 5


Per saperne di più:

La prima pulsar doppia” articolo di Andrea Possenti dell’INAF-Osservatorio Astronomico di Cagliari, pubblicato sul numero di Le Stelle, marzo 2004.

La notizia, pubblicata sul Physical Review Letters, porta i nomi di B. P. Abbott e della collaborazione scientifica di LIGO e VIRGO[cite]http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.061102[/cite].

 


Note:

Come hanno avuto origine gli elementi?

Nucleosynthesis_Cmglee_1080Sorgente: APOD: 25 gennaio 2016 – Where Your Elements Came From

Molto tempo fa ho narrato delle abbondanze chimiche nella nostra galassia e come le analisi delle varie proporzioni degli elementi del Sistema Solare ci aiutano a capire quali fossero i loro progenitori. Oggi Astronomy Picture of the Day (APOD) pubblica una divertente Tavola Periodica con suindicate le origini di ogni singolo elemento; un modo per ricordarci che l’origine dei diversi elementi che ci compongono non è sempre la stessa e che siamo in definitiva il risultato di un lungo intreccio di eventi passati molto diversi e distanti fra loro, sia nel tempo che nello spazio.

La percentuale d'acqua presente nel corpo umano varia con l'età ma dalla metà fino ai 2/3 della massa corporea è comunque acqua.

La percentuale d’acqua presente nel corpo umano varia con l’età ma si può tranquillamente sostenere che dalla metà fino ai 2/3 della massa corporea è comunque acqua.

Due atomi di idrogeno (simbolo \(H\), in alto a sinistra nella tabella) insieme a un atomo di ossigeno (simbolo \(O\), nella seconda riga in alto a destra) compongono l’acqua, da quella degli oceani alle nubi cariche di pioggia e anche quella che è presente nel corpo umano. Gli atomi di  idrogeno si formarono ben 13,8 miliardi di anni fa subito dopo il Big Bang, non ci sono state da allora altre fonti di questo elemento, che oltre ad essere il mattone elementare con cui sono stati poi costruiti nelle fucine stellari tutti gli altri elementi sparsi nell’universo, è anche quello più antico.
Il carbonio del nostro corpo, il calcio delle nostre ossa e il fluoro nello smalto dei nostri denti sono il risultato della fusione dell’idrogeno nelle stelle. Il ferro contenuto nell’emoglobina del sangue e anche quello che quotidianamente conosciamo con altre forme e con altri nomi, come ad esempio l’acciaio delle posate da cucina e quello delle automobili, nasce un attimo prima che una stella grande almeno una decina di volte il nostro Sole esploda in supernova.  Il metallo che più di tutti consideriamo da sempre il più prezioso e usato anche come controvalore negli scambi commerciali, l’oro, è il risultato di una fusione tra due stelle di neutroni [cite]http://wwwmpa.mpa-garching.mpg.de/mpa/institute/news_archives/news1109_janka/news1109_janka-en.html[/cite], uno degli eventi cosmici più potenti in assoluto e quasi sicuramente l’unico responsabile dei Gamma Ray Burst (GRB). Anche il piombo, metallo assai povero, piuttosto tossico se inalato o ingerito e conosciuto fin dall’antichità per le sue notevoli proprietà metallurgiche, è prodotto dal decadimento dell’uranio 238 (simbolo \(U\), ultima riga della tavola), che anche lui trae origine nelle collisioni di stelle di neutroni. Quando sentirete di un avvistamento di un nuovo avvistamento di un lampo di raggi gamma pensate che lì si è formato dell’oro e dell’uranio.
Solo gli ultimi, dall’americio (simbolo \(Am\) al laurenzio (simbolo \(Lr\), senza contare anche altri elementi chimici di sintesi che qui non sono riportati, sono opera dell’uomo.
Come vedete, noi e tutto quello che ci circonda nell’Universo è in definitiva Figlio delle Stelle.