KIC 8462852, una stella piuttosto bizzarra

Può suonare strano ma i primi a sperare che si trovino tracce di vita aliena non sono solo gli ufologi (alcuni di loro sono davvero in gamba e fanno un’opera di disinganno davvero notevole) ma gli astronomi. Significherebbe il compimento di quel pensiero che da Anassagora, (V secolo a.C.) attraversando 2500 anni di storia è giunto fino a noi ancora irrisolto: “siamo davvero soli nell’Universo?”.

Credit Gianluca Masi - VirtualTelescope

Credit Gianluca Masi – VirtualTelescope

Nel 1967 l’allora studentessa Jocelyn Bell e il suo relatore Antony Hewish scoprirono uno strano segnale pulsato nel cielo che non sembrava essere prodotto da alcuna interferenza di origine terrestre, ma che piuttosto appariva provenire da un punto preciso del cielo.
Quella sorgente, ora nota col poco esotico nome di PSR B1919+21, fu chiamata LGM-1 dall’acronimo di Little Green Men (Piccoli Omini Verdi). All’inizio infatti Bell e Hewish non riuscivano a spiegarsi quella strana pulsazione di 1,33 secondi e specularono sulla natura artificiale del fenomeno, attribuendola appunto a ipotetici Piccoli Omini Verdi. In seguito venne compreso che quello che sembrava un radiofaro extraterrestre era in realtà un fenomeno prettamente naturale abbastanza comune nell’Universo. Oggi se ne conoscono tantissime, le chiamiamo pulsar, e sappiamo che sono prodotte dall’interazione del campo magnetico delle stelle di neutroni (oggetti super compatti, residuo di supernovae di tipo II, aventi la massa del Sole ridotta in uno spazio di pochi chilometri) con la loro rotazione.


[table “67” not found /]

In questi giorni sta accadendo un po’ lo stesso. Tutto parte dal telescopio spaziale Kepler, che per oltre quattro anni ha misurato la luminosità di oltre 150 mila stelle in uno spazio di appena 100 gradi quadrati di cielo in direzione della costellazione del Cigno. Tra queste c’è una stella, TYC 3162-665-1, ribattezzata nella nomenclatura di Kepler come KIC 8462852 [cite]http://goo.gl/h5G4Dr[/cite].
La cosa curiosa di questa stella è la sua bizzarra curva di luce che mai ci si aspetterebbe da una stella di sequenza pincipale così comune (circa il 22% della popolazione galattica è di tipo F).

[gview file=”https://ilpoliedrico.com/wp-content/uploads/2015/10/curva-di-luce.pdf” height=”600px” width=”99%”]/span>

Come si vede dalla tabella qui a fianco KIC 8462852 è una stella in sequenza principale, un po’ più  massiccia e calda del Sole. Una stella come molte altre, se non fosse che, secondo Kepler, è soggetta a aperiodici cali di luce molto intensi, che vanno dal 15 fino al 22%, come dimostrato qui sopra (i dati sono comunque pubblici e sono disponibili qui [cite]http://goo.gl/ywDlLc[/cite]).
Nei miei precedenti articoli [cite]http://goo.gl/738Z1p[/cite] ho descritto come calcolare le dimensioni di un esopianeta partendo dal calo di luce registrato. In questo caso specifico per giustificare un calo di circa il 20% come quelli talvolta registrati occorre un oggetto grande circa sette decimi del Sole: circa 492 mila chilometri di raggio. Una cosa enorme!
Inoltre, se avreste la costanza di guardare la mole dei dati pubblici di Kepler su questa stella di cui ho fornito il link, vedreste che ci sono diverse decine di questi misteriosi e potenti cali e che non sembrano affatto periodici.  In più, se fossero causate da uno o più oggettti sferici, ci si aspetterebbe che la forma di questi affievolimenti fosse regolare. Invece no, la forma che Kepler rivela che questi sono irregolari anche come forma.
Eliminata l’ipotesi di guasto strumentale, dopotutto solo KIC 8462852 ha restituito questi straordinari solo per questa stella, non resta che cercare altre spiegazioni all’interno di quel sistema stellare.
Come si evince dal documento PDF qui sopra, è evidente il segnale seghettato dovuto alla veloce rotazione della stella, solo 21 ore per compierne una; l’irregolarità presente in questo segnale forse è dovuta alla presenza di macchie stellari anche se questo non giustifica tutto il resto.
Un altro aspetto da non sottovalutare è che KIC 8462852 è stella di classe F3, non è quindi longeva quanto il Sole, può restare nella Sequenza Principale meno di 3 miliardi di anni circa.

Ipotesi naturali

La prima ipotesi che viene in mente è che la stella sia una variabile irregolare, ma la sua presenza nella sequenza principale cozza con tutto ciò che sappiamo sulle stelle variabili. Le variabili intrinseche (cioè non dovute alla presenza di altri compagni stellari come Algol) sono quelle stelle in cui le variazioni di splendore sono dovute a variazioni nelle condizioni fisiche come la temperatura, la densità o il volume.  In genere queste condizioni si verificano quando la stella sta per abbandonare – o lo ha già fatto – il ramo principale del diagramma di Hertzsprung-Russell, ma non sembra che questo sia il caso di KIC 8462852. Ipotesi scartata.
Al momento della loro nascita tutte le stelle sono circondate dai resti della nebulosa protostellare, il che potrebbe  spiegare benissimo gli improvvisi e irregolari sbalzi di luce registrati. Però  in tal caso dovrebbe essere presente anche un eccesso nella radiazione infrarossa dovuto alla presenza di queste polveri, cosa che le immagini riprese nell’infrarosso escludono (vedi il documento). Anche questa ipotesi è scartata.
La presenza di giganteschi pianeti che tutti insieme riescono a coprire almeno il 40% della superficie del disco è improponibile, e comunque il segnale prodotto sarebbe completamente diverso da quello registrato e una analisi armonica avrebbe rivelato la loro presenza. Altra ipotesi scartata.

Un incontro ravvicinato

Allora cosa provoca quegli strani picchi di luce? Semplicemente non lo sappiamo, potrebbero essere il risultato di una collisione planetaria che ha sparso i detriti in orbita alla stella, ma anche in questo caso la luce della stella dovrebbe riscaldare queste polveri tanto da restituire un eccesso di radiazione infrarossa, ma così appunto non è, nessun eccesso IR è stato finora registrato.
Un’altra idea potrebbe essere che la sua nube di Oort, o parte di esssa, stia in qualche modo collassando verso la stella e che miriadi di comete stiano precipitando verso di essa. Molte comete sublimerebbero ancor prima di raggiungere il periastro e verrebbero spazzate via come gas e polvere dal vento stellare, dando origine all’irregolarità dei picchi. Così si spiegherebbero le strane irregolarità nel flusso luminoso e forse anche la non presenza di una emissione IR in eccesso, ma per giustificare così i cali di luce della stella occorrono tante, ma tante comete in caduta contemporaneamente.
Una analisi della stella nell’infrarosso effettuata con l’United Kingdom Infrared Telescope (UKIRT) alle Hawaii mostra una lieve protuberanza che da altre analisi effettute con l’ottica adattiva all’infrarosso del telescopio Keck (banda H a 1,65 micron) si mostra essere una debole stellina  di classe M2V, grande cioè appena 4 decimi del Sole. Supponendo che essa sia alla stessa distanza di KIC 8462852 allora la distanza tra i due astri risulta essere di sole 885 UA, circa 132 miliardi di chilometri. Ancora non esistono dati sufficienti per stabilire se le due stelle siano legate gravitazionalmente o meno; ammettendo comunque che non lo fossero e che la nana rossa viaggiasse a 10 chilometri al secondo attraverso il sistema solare principale, le occorrerebbero 400 anni per attraversarlo tutto, un tempo quindi abbastanza lungo per portare scompiglio alla nube di Oort di KIC 8462852 fino forse farla collassare almeno in parte verso la stella principale, giustificando così la sua bizarra curva di luce .

Ipotesi artificiale

Jason Wright, un astronomo della Penn State University ha invece una teoria ancora più bizzarra: megastrutture artificiali in orbita alla stella capaci di catturarne parte dell’energia per renderla disponibile ad una civiltà aliena che si attesterebbe intorno al II grado della scala di Kardashev, capace cioè di manipolare l’energia di un’intera stella [cite]http://goo.gl/Egh6aU[/cite].
Non necessariamente, come da molti siti indicato a sproposito, questa o questte strutture dovrebbero dar luogo a una Sfera di Dyson, una struttura sferica che avvolge tutta la stella per raccoglierne tutta l’energia: primo, è assai improbabile trovare all’interno dei sistemi stellari tutta la materia necessaria per avvolgere completamente la stella ad una distanza utile da comprendere una ecosfera abitabile, e anche se fosse, molto probabilmente questo sarebbe un guscio troppo sottile per essere funzionale (almeno per i nostri standard tecnologici). Poi c’è l’eterno inconveniente delle leggi della termodinamica che spesso troppi tendono a dimenticare: affinché ci sia un lavoro deve esserci una differenza di potenziale, il che significa che tutta l’energia deve essere reirradiata nello spazio esterno nella sua forma più degradata 1, cosa che sicuramente non sarebbe passata inosservata alle diverse survey nell’infrarosso o ai radiotelescopi nelle lunghezze d’onda maggiori [cite]http://goo.gl/tMH1yF[/cite].
Strutture ad anello o specchi sparsi nelle varie orbite sarebbero strutture molto più facili da costruire e più funzionali rispetto a una Sfera di Dyson e, se complessivamente fossero abbastanza grandi, in questo caso almeno 7,60 x 1011  km2, ovvero 760 miliardi di chilometri quadrati, potrebbero giustificare questi cali di luce, ma lo stesso dovrebbe essere presente un picco IR per giustificare la radiazione degradata riemessa nello spazio.
Infine c’è l’età della stella, che per una stella grande 1,6 volte il Sole è comunque ridotta a un terzo. Anche ammettendo l’esistenza di un pianeta adeguato alla vita in un’orbita simile a quella di Marte (ricordo che la stella è più calda del Sole e quindi anche l’ecosfera è un po’  più grande della nostra) e con due terzi di vita della stella alle spalle (2 miliardi di anni), esso è probabilmente ancora troppo giovane perché possa ospitare forme di vita intelligenti da dar luogo ad una civiltà così evoluta da costruire gigantesche strutture artificiali in orbita alla loro stella. Si potrebbe obbiettare che questi costruttori potrebbero provenire da qualche altra parte, ma anche questa è solo una giustificazione che finisce per complicare quella precedente.

Conclusioni

Jason Wright ha fatto bene a pubblicare su ArXiv le sue speculazioni [cite]http://goo.gl/rSQ26H[/cite] e anche a citare il caso di KIC 8462852 tra i casi che richiedono più attenzione. È comunque sempre giusto prendere scientificamente in considerazione ogni ipotesi, nessuna esclusa.
Ma qui sempre di ipotesi si tratta, non di certezze come purtroppo in questo momento molti altri siti e media – anche autorevoli – stanno facendo. Anche se l’ipotesi del collasso della nube di Oort della stella appare piuttosto striminzita, per ora è la migliore che si possa fare. Far passare per vera l’esistenza di gigantesche strutture artificiali intorno alla stella solo sulla base che le altre ipotesi finora postulate sono deboli, non è fare scienza. Fin quando l’ipotesi di Wright rimane solo un’altra ipotesi, spacciarla per vera è un insulto all’intelligenza.
Solo il tempo, e altri dati, potrannno darci una risposta sensata; le speculazioni fatte a caso giusto per scroccare un click o un like sui social network no.

Stella stellina, l’eclissi ti è vicina

Grazie all’attenzione di un lettore, Nicolò -che ringrazio, mi sono accorto che il software di simulazione (Stellarium) era saltato e proiettava dati non veritieri.  In realtà la disoccultazione di 51 Oph avviene alle 20:09 per la mia località di riferimento, con differenze minime rispetto al resto dell’Italia e quindi invisibile. Fatto salvo questo grossolano errore,  il resto dell’articolo rimane comunque valido. Grazie, e scusate di nuovo per l’imperizia.

 

 

 

 

Due nuove simulazioni dell’eclissi di Luna
15 giugno 2011 – Credit: Il Poliedrico

 

Disoccultazione 51 Ophiuchi (c Oph) prevista per le 21:45 - Credit: Il Poliedrico

Ecco due nuove simulazioni della trentaquattresima eclissi – di Luna – del centotrentesimo ciclo di Saros 1.

Una curiosità che ho scoperto guardando le simulazioni, è che alle 21:45 circa si disocculterà una stella abbastanza ben visibile rispetto a quelle che circondano il nostro satellite, perché è quella più luminosa, alla portata di un normale teleobbiettivo o binocolo, visibile anche a occhio nudo: c Ophiuchi o 51 Ophiuchi.

51 Ophiuchi

51 Oph, – per gli amici – è una stella un po’ particolare rispetto alle altre ben più attempate stelle normalmente visibili nel cielo. È una stella giovanissima, di età compresa tra i 700 mila e 1,5 milioni di anni le cui reazioni termonucleari si stanno per accendere proprio ora, una fase chiamata di pre-sequenza principale 2. È ancora avvolta nel suo bozzolo di polveri non ancora dissipate e …. possiede un disco planetario ben compatto in cui probabilmente si stanno formando per la prima volta attorno a questa stella dei pianeti.

51 Ophiuchi
Costellazione Ofiuco
Ascensione retta α 17h 31m 24,95s
Declinazione δ -23º 57’ 45,5’’
Distanza 410 anni luce
Magnitudine visuale +4,81
Magnitudide assoluta –0,80
Luminosità 312 volte Sole
Temperatura 10.250 K
Massa 4,2 masse solari
Tipo spettrale A0V
Velocità radiale -12 km/s
Età stimata 700000 anni
± 500000

Il sistema di 51 Oph è simile a quello di β Pictoris, il disco è visto di profilo dalla Terra.
La distanza che ci separa da 51 Ophiuchi è molto più grande rispetto a β Pictoris (appena 63 anni luce), pertanto il disco di 51 Ophiuchi è stato possibile osservarlo solo attraverso l’interferometro del Keck Observatory, il quale ha evidenziato ben due componenti distinte del disco: la prima, centrale, è una nube di particelle di polvere di grandi dimensioni, mentre l’altra sembra essere una nuvola che circonda tutto il sistema ed è composta da minuscole particelle di silicati che vanno da 7 a  1200 unità astronomiche dalla stella. Il disco interno ha un raggio di circa 4 UA, con una densità circa 100.000 volte superiore alla polvere del nostro sistema solare. Nel disco interno le collisioni hanno creato chicchi di grandi dimensioni superiori a 50 micron capaci di resistere all’intenso vento stellare,  mentre i grani inferiori ai 50 micron vengono espulsi dalla pressione di radiazione della stella.

Non sono molte le stelle che appartengono a questa classe speciale: le  Herbig Ae/Be praticamente sono stelle con una massa superiore a 2 masse solari  in una fase anteriore all’ingresso nella sequenza principale che avviene quando la stella raggiunge le condizioni di una fusione termonucleare dell’idrogeno stabile. Per le stelle con massa inferiore alle 2 masse solari questa fase è chiamata T Tauri dal nome della stella che per prima fu identificata con queste caratteristiche.

Come vedete, anche da una banale -si fa per dire – eclissi di Luna si può fare della sana astrofisica, d’altronde le eclissi così non capitano tutti i giorni!

Foto di famiglia per una stella

L'immagine ad infrarossi del sistema planetario HR8799 (HD218396). Questa immagine mostra il pianeta HR8799b (cinque volte la massa di Giove), pianeti e HR8799c HR8799d (sette volte la massa di Giove) e la HR8799e (nuovo pianeta). Le frecce indicano il moto dei pianeti previsto per i prossimi 10 anni. Credit: NRC-HIA, Christian Marois, and the WM Keck Observatory

Quella che vedete è la prima immagine di un sistema planetario diverso dal nostro, Distante circa 129 anni luce, HR8799 è lassù, sul bordo del grande quadrato di Pegaso a circa metà strada tra Markab (α Pegasi) e Scheat (β Pegasi), appena visibile ad occhio nudo nelle migliori condizioni.
Questo sistema planetario fu scoperto nel 2008 da Christian Marois ed altri usando una tecnica particolare chiamata immagine differenziale angolare usata sia sulle immagini riprese  al W.M. Keck che al Gemini Nord posti sul monte Mauna Kea alle isole Hawaii [1].

Pianeti
(in ordine di distanza)
Massa
(Giove = 1)
Semiasse Maggiore
(UA)
Periodo Orbitale
(anni)
Eccentricità
e 9±4 ~ 14.5±0.5 ~ 45 ?
d 10±3 ~ 24 ~ 100 >0.04
c 10±3 ~ 38 ~ 190 ?
b 7+4−2 ~ 68 ~ 460 ?
Disco di polvere 75 unità astronomiche

Questi sono giganti gassosi enormi, che insieme fanno una massa complessiva di oltre 30-40 pianeti come Giove distribuiti in una zona che va al di là dell’orbita di Saturno (10 UA) fino a 7 volte questa.
Questa scoperta mette in crisi le nostre teorie sulla nascita e l’evoluzione dei sistemi planetari: com’è possibile che a 70 UA ci sia stata ancora materia sufficiente per formare il pianeta b? e anche per creare gli altri pianeti più interni d e c?
Potrebbero essere migrati da zone più interne del disco protoplanetario fino ad occupare l’attuale posizione o sono pianeti vagabondi nati nel cluster stellare progenitrice della stella  come mostrano alcune simulazioni per le comete [2] e poi catturati in seguito, oppure il nostro modello che spiega abbastanza verosimilmente il sistema solare è da riscrivere?

Il bello della scienza, e quindi anche dell’astronomia, è proprio questo: ogni scoperta solleva molte altre domande senza risposta le quali, una volta esaudite, portano ad altre scoperte e così via.
La prossima volta che osserverete il grande quadrato di Pegaso, ricordatevi di questa stellina e se riuscirete a scorgerla pensate che qualche fotone di questa proviene anche da questi pianeti.

[1]  http://www.gemini.edu/node/11151
[2] http://www.swri.org/9what/releases/2010/cometorigins.htm